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1.0 EXECUTIVE SUMMARY 

To understand the distribution of rare plants covered under the Clark County Multiple Species 
Habitat Conservation Plan, in 2009 the Desert Conservation Program and TerraSpectra 
Geomatics developed two coarse soil GIS models using ASTER Imagery, soil survey data, and 
geological data.  Species specific habitat models for eight rare and endemic plant species were 
then created using the soil models and presence/absence data.  The first group of models 
included models for three gypsum loving species:  sticky ringstem (Anulocaulis leiosolenus var. 
leiosolenus); Las Vegas bearpoppy (Arctomecon californica); and Las Vegas buckwheat 
(Eriogonum corymbosum var. nilesii).  The second group of models included models for five 
sand or potentially sand loving species:  threecorner milkvetch (Astragalus geyeri var. 
triquetrus); Pahrump Valley buckwheat (Eriogonom bifurcatum); sticky buckwheat (Eriogonum 
viscidulum); Beaver Dam breadroot (Pediomelum castoreum); and white-margined beardtongue 
(Penstemon albomarginatus) (Kokos et al, 2009).   The models were used to create a survey 
design to improve the knowledge of the distribution of the species within Clark County.  Two 
additional species, white bearpoppy (Arctomecon merriamii) and two-tone beardtongue 
(Penstemon bicolor ssp. bicolor), were also targeted during the field surveys. 

The original habitat models were purposely over-predictive so as to not bias the field surveys 
with prior knowledge about the species natural history. Once the surveys were completed, the 
goal was to refine the habitat models using the knowledge gathered during the field surveys.  In 
addition, a new County-wide (Clark County) surficial geologic map has been published since the 
development of the original models (House et al, 2010).   As part of the current project, the 
original gypsiferous and sandy soil models were updated by TerraSpectra to incorporate the 
new County-wide surficial geologic map along with other refinements (TerraSpectra, 2011).  
These new soil models were then used to create new habitat models for each of the species.   
These new species specific habitat models incorporated knowledge about the species elevation 
range along with the species occurrence patterns compared to the soil model detailed attributes.  
The individual models were then attributed with information about the species known 
occurrence and absence records.  In addition to the soil based models, climate based models 
were created for each of the species using Maxent. 

Overall, the project demonstrates the potential for and usefulness of creating soil based habitat 
models for many of the target species.  A soil-based habitat model was not created for two-tone 
beardtongue because it is neither a gypsum nor sand loving species.  Two-tone beardtongue is 
found on rocky and gravelly soils and no attempt was made to model this soil type because 
rocky soils are wide spread throughout Clark County and can occur in almost any geologic or 
soil map unit.  The gypsum based model for white bearpoppy misses many of the known 
occurrences within Clark County.  This species occurs not only on gypsum but also calcareous 
soils which were not modeled.  For these two species, the climate based models may be the 
best option at this time.   

This habitat modeling exercise highlighted several important issues for future modeling efforts.  
The quality of the models can be greatly influenced by the quality and spatial resolution of the 
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inputs used, including the quality of the species occurrence data.  Finer resolution maps are 
better than coarse resolution maps but even fine resolution maps are not helpful if the soil 
parameter of interest is not mapped.  Issues with the quality of the plant species occurrence 
records can also impact the quality of the habitat maps.  Data with errors or low positional 
accuracy can lead to habitat types inappropriately being included or dropped from the habitat 
model.  Finally, this project highlights the need for absence data to be documented.  Absence 
data does not definitively indicate that a species was never present at a site or that the site does 
not contain suitable habitat.  Documented absence data, though, does provide management 
more information when trying to make decisions when an area has been modeled as potential 
suitable habitat. 
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2.0 INTRODUCTION 

2.1 Background 

2.1.1 History of Project 
The project was originally proposed in 2004 by the Bureau of Land Management (BLM) as a 
rare plant inventory project as part of the 2005-2007 Implementation Plan and Budget for the 
Clark County Multiple Species Habitat Conservation Plan (MSHCP).  The proposed project was 
accepted by the Clark County Desert Conservation Program (DCP) through the Round 6 
funding cycle.  When the funding became available in 2007, the BLM was unable to implement 
the project, so the project reverted back to the DCP for implementation.   

Based on discussions with BLM and Fish and Wildlife Service (FWS), ten species were selected 
due to pressing conservation concerns.  The species were sticky ringstem (Anulocaulis 
leiosolenus var. leiosolenus), Las Vegas bearpoppy (Arctomecon californica), white bearpoppy 
(Arctomecon merriamii), threecorner milkvetch (Astragalus geyeri var. triquetrus), Pahrump 
Valley buckwheat (Eriogonum bifurcatum), Las Vegas buckwheat (Eriogonum corymbosum var. 
nilesii), sticky buckwheat (Eriogonum viscidulum), Beaver Dam breadroot (Pediomelum 
castoreum), white-margined beardtongue (Penstemon albomarginatus), and yellow two-tone 
beardtongue (Penstemon bicolor ssp. bicolor).   

For these ten species, the goal of the project was to address information gaps such as locating 
unknown populations or the extent of known populations in Clark County (County) (Kokos et al, 
2009).   This improved knowledge of the species distributions could be used to better identify 
potential areas of conservation by land managers. 

2.2 Need for Habitat Models 
In developing the sampling design for the DCP project, the surveys needed to be focused in 
areas with a potential to have the rare plants of interest instead of just randomly distributed 
throughout  all areas of the County.  In 2007, the Lower Elevation Rare Plant Conservation 
Management Strategy (LERPCMS) was completed by The Nature Conservancy (TNC, 2007).   
This document covered 7 out of the 10 species included in the DCP project.  As part of this 
document, TNC produced polygons representing buffers around the known locations of each of 
the species. The DCP used this distribution information from the TNC document as a starting 
point for the inventory project. The DCP, though, determined that these distribution polygons 
were not suitable for use in developing a sampling design because they would have limited the 
surveys to areas already known to contain the species.  This would not have resulted in 
increasing the distributional knowledge of the species within the County. 

In order to maximize the potential for finding new populations of the rare plants while also 
looking at potential suitable habitat throughout the County, it was decided to develop predictive 
habitat models for the species that could be used to help limit where surveys would be 
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performed.  A requirement of project was that at least 20% of the surveys needed to be 
conducted in areas not known to contain the species. 

2.3 Initial Modeling Efforts 

2.3.1 SSURGO 
Because the majority of the species of interest had distributions thought to be driven mostly by 
soil type, the Natural Resources Conservation Service (NRCS) Soil Survey Geographic 
Database (SSURGO) soil maps were investigated for their usefulness in developing quick 
predictive habitat models.  Three separate SSURGO soil studies have been performed for 
different parts of the County by NRCS (NRCS 2007a, 2007b, 2009).  No soil surveys had been 
performed for the northwest corner of the County by NRCS.  This was not considered a concern 
because most of the species of interest were not known to occur in that corner of the County.   

The DCP contracted with an independent soil scientist, Rick Van Remortel, to use SSURGO 
geographic information system (GIS) data to develop gypsum and sand coverages for the 
County based on both weighted averages and maximum values per soil map unit.  In studying 
the results, several issues with using just SSURGO data were discovered.  For gypsiferous 
soils, the soil surveys in the northeast portion of the County (NV608 – NRCS, 2009) tended to 
lump high gypsum soils in with badlands and did not report on their percent gypsum content.  
Therefore, the resulting gypsum map missed many of the map units that contained the gypsum 
plants in that area.  The use of badland soils in addition to the percent gypsum map was 
investigated but this had the result of greatly over predicting gypsiferous soils in the area since 
the badland map unit type included many other types of soils such as sand dunes. 

For the sandy soils, the known locations of species considered sand-loving plants occurred on a 
wide range of percent sand values.  Thus use of this alone would have greatly over predicted 
the amount of possible habitat for these species. 

2.3.2 Landsat Thematic Mapper Imagery 
Because SSURGO by itself did not prove useful in developing initial habitat models, it was 
decided to investigate whether multispectral satellite imagery such as Landsat Thematic Mapper 
imagery (Landsat) could be used to identify gypsiferous and sandy soils.  An initial visual 
inspection of Landsat images for the County with known plant locations overlain indicated that 
the imagery could prove useful in the development of the habitat models. 

Based on the initial inspection of the Landsat imagery and the SSURGO “percent gypsum” map, 
DCP staff identified and visited several areas throughout the County.  Specifically, an area in 
Gold Butte was identified that had no known species occurrences but SSURGO identified as 
having high gypsum content and the area visually matched other areas with known gypsum 
species occurrences on the Landsat imagery.  Upon visiting the area, a population of Las Vegas 
buckwheat was encountered and documented.  This reinforced the idea that multispectral 
satellite imagery could be used to help develop the initial predictive habitat models.  
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2.4 Creation of Sand and Gypsum Models 
Because the DCP did not possess the software to analyze multispectral imagery, the DCP 
contracted TerraSpectra Geomatics (TerraSpectra) to further investigate the use of remote 
sensing imagery to identify areas of relatively higher gypsum and sand content. 

An approach based on imagery from the Advanced Spaceborne Thermal Emission and 
Reflection (ASTER) satellite was selected for developing the gypsiferous and sandy soil maps.  
ASTER was specifically designed for geologic applications, with 14 spectral bands sensitive to 
specific regions of the electromagnetic spectrum in the visible and near infrared (VNIR), 
shortwave infrared (SWIR), and thermal infrared (TIR) .  TerraSpectra acquired 14 individual 
ASTER scenes from 2004 (a drought year) and mosaiced them into a single countywide 
mosaic.  Principal Components Analysis (PCA) was performed on the imagery using the VNIR 
and SWIR bands to create the gypsum classification; a PCA of the TIR bands was used to 
create a sandy soils classification.   

Because sand is defined based on particle size, it cannot be mapped directly using remote 
sensing methods.  Instead, TerraSpectra mapped quartz as a surrogate for sand since most of 
the sand in the County is silica and thus quartz based.   Principal Component 2 (PC2) from the 
PCA of TIR imagery was found to be a good indicator of silica or quartz content.  A binary 
threshold classification of PC2 for sandy versus non-sandy soils was performed using geologic 
maps of various scales and field visits to help control and then verify the classification.  

For the gypsum classification, TerraSpectra used 20 gypsum training sites picked from known 
locations of gypsum plants, gypsum mining data from the United States Geological Survey 
(USGS) Mineral Resources Data System (MRDS) (USGS, 2005), site visits with DCP, and 
guidance from the DCP staff.  These training sites were used to perform a supervised 
classification of the PCA results into gypsum and non-gypsum classes.  Selected large scale 
(1:24k) geology maps were used to assist in the classification. 

Because the ASTER imagery alone was not sufficient to uniquely identify sandy and gypsiferous 
soil models, the ASTER classifications were combined with geology maps and SSURGO soil 
maps (for the sand model) to create the final draft soil models.  No single 1:100k geology map 
existed that covered the entire County so TerraSpectra had to combine six different geology 
maps with two different scales (1:100k and 1:250k) into a single composite map for the County.  
The map units on this composite map were then attributed as either gypsiferous, spring deposit, 
or non-gypsiferous, and high, medium, or low potential for sand-producing geologic units.  This 
was done by reviewing the geologic unit descriptions from the individual map reports and by 
comparing the maps to selected 1:24k scale geology maps that contained information on 
gypsum bearing map units.  For the gypsum model, spring deposits were used because they 
are sometimes gypsiferous and because of their known high correlation with the distribution of 
Las Vegas buckwheat.   

The final gypsiferous soil model was then produced by combining the results of the ASTER 
gypsum classification with the compiled and attributed gypsiferous geologic map.  The 
combination of the ASTER gypsum model and the attributed geologic map resulted in 6 possible 
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combinations.  These were:  ASTER classed gypsum on gypsiferous geology; not ASTER 
classed gypsum on gypsiferous geology; ASTER classed gypsum on spring deposits; not 
ASTER classed gypsum on spring deposits; ASTER classed gypsum on non-gypsiferous 
geology; and not ASTER classed gypsum on non-gypsiferous geology. 

Since many of the geologic units have the potential to be sandy, refinement of the sand model 
even further was desired.  The SSURGO maps were recoded into whether a map unit had an 
area weighted average percent sand within the top 1 foot of soil above or below 75%.  In 
addition, it was decided to recode geology maps into not just sand/non-sand but also their basic 
geologic type (e.g., younger alluvium, tertiary clastic bedrock, etc.) This allowed the model to 
have multiple potential sand unit types to choose from when developing the individual species 
predictive habitat models.  The final sand model was a combination of the ASTER quartz 
classification, the geology maps coded into general geologic formation type, and the SSURGO 
percent sand map.  This resulted in 28 possible combinations. 

2.5 Creation of Species Predictive Habitat Models 
Once the gypsiferous and sandy soil models were developed by TerraSpectra, the DCP used 
the models to create individual predictive habitat models for each of the species of interest.  
This was done by using GIS software to tabulate the number of known occurrences for each 
species by polygon type from either the sand or gypsum soil models.  The polygon types were 
then classed as high, medium, low, or no probability of occurrence for each species (Tables 2-1 
and 2-2).  This was done by analyzing the number of occurrences per polygon type.  The 
analysis did take into account the fact that the occurrence data is heavily biased by survey effort 
with some areas having hundreds of points due to intensive sampling efforts and other areas 
only having single records.  In addition, many of the species had occurrence records on a wide 
range of soil types (or for the gypsum model, all soil types), including those modeled to not be 
gypsiferous or sandy soils.  Thus, professional judgment was used in ranking suitability. 

Table 2-1.  Gypsum Species Predictive Habitat Models 

Species 

 

ASTER 
Classed 

Gypsiferous 
Geologic Unit 

ASTER 
Classes Non-
Gypsiferous 

Unit 

ASTER 
Classed 
Spring 
Deposit 

Not ASTER 
Classed 

Gypsiferous 
Unit 

Not ASTER 
Classed 
Spring 
Deposit 

Las Vegas 
bearpoppy 

High Medium Low High Medium 

Las Vegas 
buckwheat 

Medium Medium High Medium High 

Sticky 
ringstem 

High Medium Low High Medium 



 

 
Table 2-2.  Sand Species Predictive Habitat Models. 

Species Not 
Quartz 

Classfied, 
Eolian 

Not 
Quartz 

Classified, 
Mixed 
Eolian 

and 
Alluvium 

Not 
Quartz 

Classified, 
Younger 
Alluvium, 
SSURGO 

sand 
>75% 

Quartz 
Classified, 
Drought 
Exposed 
Lake Bed 

Quartz 
Classified, 

Eolian 

Quartz 
Classified, 

Mixed 
Eolian 

and 
Alluvium 

Quartz 
Classified, 

Non-
Clastic 

Bedrock, 
SSURGO 

sand 
>75% 

Quartz 
Classified, 

Older 
Alluvium 

Quartz 
Classified, 

Quartz 
Sand 

Veneer 
Over 

Calcrete 

Quartz 
Classified, 

Tertiary 
Clastic 

Bedrock 

Quartz 
Classified, 
Younger 
Alluvium 

Threecorner 
milkvetch1 

- - - - High - Medium Medium Medium Low High 

Sticky 
buckwheat 

- - - High Low - - High - High Medium 

Pahrump 
Valley 
buckwheat 

- High - - - - - - - - - 

White-
margined 
penstemon 

High High High - - High - - - - Medium 

1.  Model used for Beaver Dam Breadroot also. 
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Because some species had similar predictive habitat models, only one model was created for 
each group of species.  Models were created for Las Vegas buckwheat, Las Vegas bearpoppy 
(including sticky ringstem), white-margined penstemon, Pahrump Valley buckwheat, threecorner 
milkvetch (including Beaver Dam breadroot), and sticky buckwheat.  For some species a low 
probability model was not created.   

Predictive habitat models for white bearpoppy and yellow two-tone beardtongue could not be 
created using either the sandy or gypsiferous soil models.  Yellow two-tone beardtongue is 
found in disturbed rocky or gravelly habitats, such as washes and along roads.  White 
bearpoppy does occur on gypsum soils but also occurs on calcareous soils that were not 
modeled (NNHP, 2001).  It also can occur in small outcrops of gypsiferous soil that are smaller 
than the spatial resolution of the imagery or minimum mapping units of the compiled geologic 
map and soil survey maps.  Therefore, most of the known occurrences of white bearpoppy were 
not in areas predicted to contain gypsiferous soils based on the gypsum model created by 
TerraSpectra.   

2.6 Field Survey Sample Design 
Once the predictive habitat models for each species were created, the next step was to develop 
a stratified sampling design in order to survey areas throughout the County as potential suitable 
habitat but for which there were no known existing GIS occurrence data. 

2.6.1 Division of County into Geographic Units 
The first step in developing the sampling design was to split the County into 18 smaller 
geographic units to ensure sampling points were more evenly distributed throughout the County 
and to ensure some points occurred in each geographic unit.  These geographic areas were not 
equal in shape and size but instead were based on the desired level of effort for each area.  
Areas for which access would be an issue due to land ownership or terrain were delineated as 
separate units.  These included tribal lands, the urbanized Las Vegas valley, the Nellis Air Force 
Range, a portion of the USFWS wildlife refuge surrounded by Nellis Air Force Range property, 
and the Spring Mountains.  This left 13 geographic units to be sampled.   

2.6.2 Creation of Random Sampling Locations 
Once the County was divided into geographic units, the DCP tasked TNC to use a Generalized 
Random Tessellation Stratified (GRTS) design to create the sample points for the field surveys.  
DCP directed TNC to stratify the sample points in each geographic unit with 70% of the points 
within a unit being in high probability habitat, 20% in medium, and 10% in low.  Because the 
geographic units each contained different total area amounts for the different high/medium/low 
predictive habitat types for each species, it was decided to further stratify the number of sample 
points in each geographic unit by the amount of habitat within the unit.  This was done by 
quantifying the acreage of predicted habitat within each geographic unit for each species.  The 
geographic units were then grouped into either large or small units to be surveyed.  Thus for the 
geographic units with a large amount of habitat, TNC, using GRTS, created 70 sample points in 
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high, 20 in medium, and 10 in low probability habitat predicted by the species habitat models.  
For units with a small amount of habitat, TNC created 35 high, 10 medium, and 5 low.  For 
species without a low probability model, only high and medium probability points were created.  
Due to a lack of a habitat type in some units for some species, not all species had sample points 
in all of the high/medium/low categories.  To prevent sampling from known locations, a 4 
hectare buffer was created around existing known locations and these buffered areas were 
removed from the models before creating the sampling locations with GRTS.   

Once the set of potential survey locations were created by TNC, the DCP reviewed each point 
for access issues.  In all areas except for the Sheep Range, points at high elevation or rough 
terrain were removed, mainly due to potential access issues.  For the Sheep Range, elevation 
was not used as a filter because of the potential for white bearpoppy at higher elevations and 
the general overall higher elevations of the area.  From the remaining set of survey points, the 
DCP selected the first 7 high, 2 medium, and 1 low predicted habitat points for each species 
group from each geographic unit to create the official set of points for the field surveys.  Since 
not all species groups had points for all three probability levels in each geographic unit, some 
species groups did not have 10 survey points per geographic unit. For the Las Vegas 
buckwheat model, high probability habitat was originally spring deposits but because this habitat 
type was uncommon or small in most of the geographic units, placing a large number of sample 
points in this habitat type would have resulted in repeat sampling of the same area.  Thus for 
the field surveys, the Las Vegas buckwheat model survey points were flipped so that 7 points 
were in the medium and 2 were in the high probability habitat type.   

Although GRTS is supposed to ensure that the survey points are well distributed spatially, it did 
create overlapping points in habitat types that were rare or where few polygons were available 
to distribute the survey points.  The final sample point pool consisted of a total of 547 points.  
The Gold Butte geographic unit received a double allocation of points for the Las Vegas 
buckwheat and Las Vegas bearpoppy models as part of additional funding to more intensively 
survey that geographic unit. 

2.7 Field Surveys   
Once the sample points were determined, DCP contracted and directed ICF Jones & Stokes 
(ICF) to conduct the field surveys.  ICF was required to not only survey each location for all 10 
target species but also looked for and documented any of the target species that were 
encountered while en route to the survey locations.  These observations were documented as 
incidental observations.  At each survey location, the DCP required ICF to record the physical 
attributes of the plot including basic soil type of the plot (e.g., sand, gypsum, rocky, etc.) and the 
predominant slope and aspect.  ICF was directed to document the survey location through 
photo points.  ICF also documented the presence of other non-target gypsum or sand species 
that could be used as indicators of potential suitable habitat for the target species.  The list of 
indicator species was provided by the DCP.  Detailed information of the data recorded at each 
plot and for each target species occurrence can be found in the Data Management Plan, Work 
Plan, and Final Report submitted by ICF to the DCP as part of that contract (ICF 2009a, 2009b, 
2010). 
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2.7.1 Field Survey Results  
Table 2-3 documents the field survey results for the surveys conducted in 2009 and 2010 by 
ICF.  All ten of the target species were encountered.   

Table 2-3.  Field Survey Results. 

Species Plot Observations 
(Plots1) 

Incidental Observations Total 

Sticky ringstem 2 3 5 

Las Vegas bearpoppy 20 (17) 18 38 

White bearpoppy 9 (8) 4 13 

Las Vegas buckwheat 1 2 3 

Threecorner milkvetch 6 2 8 

Pahrump Valley buckwheat 3 0 3 

Sticky buckwheat 5 1 6 

Beaver Dam breadroot 16 (14) 9 25 

White-margined penstemon 1 0 1 

Yellow Two-tone beardtongue 2 2 4 

Total Number of Observations 65 (56) 41 106 
1.  The number in parentheses represents the number of different plots with at least one observation.  One plot could have 

more than one observation per species or more than one species. 
 

Table 2-4 shows the occurrences broken down by their high, medium, and low model levels and 
provides a different way of looking at how well the models performed.  The table includes both 
the plot and incidental species observations.  The survey points were provided to ICF without 
the descriptive information that would have shown what species was targeted for a given survey 
plot.  Within each survey plot every target species was surveyed for regardless of habitat type.  
The results in the “non” category of Table 4 describe occurrences documented in habitat not 
included in the species specific predictive habitat model.  When analyzing the results in the 
table, it should be kept in mind that 70% of the survey locations were in the high categories and 
that more occurrences in this category could be simply due to survey effort.  The results, 
though, do support the use of the high, medium, and low levels to help maximize the probability 
of finding the target species.  
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Table 2-4.  Survey Results by Model. 

Species High Medium  Low Non 

Sticky ringstem 4 + 1 
edge1 

0 0 0 

Las Vegas bearpoppy 16 + 3 
edge 

6 + 6 edge 5 2 

White bearpoppy 8 + 2 edge 2 0 1 

Las Vegas buckwheat 2 1 0 0 

Threecorner milkvetch 3 + 1 edge 3 0 12 

Pahrump Valley buckwheat 1 0 0 23 

Sticky buckwheat 5 0 0 13 

Beaver Dam breadroot 12 + 1 
edge 

8 + 2 edge 1 14 

White-margined penstemon 1 0 0 0 

Total Number of Observations 52 + 8 
edge 

20 + 8 edge 6 8 

1.  Edge indicates that an occurrence was documented just outside of a polygon of the corresponding habitat type and due to GPS 
accuracy or model resolution, likely occurred in that habitat type. 

2.  Occurrence was documented in a high habitat type for sticky buckwheat. 
3. Occurrences were documented in gypsum habitat. 
4. Occurrence was documented just outside of a high habitat polygon for white-margined penstemon. 
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3.0 CURRENT PROJECT 

3.1 Purpose 
As stated above, the original draft predictive habitat models were intentionally left broad to 
prevent biasing the models toward what was already known about the species distribution and 
natural history.  The goal of the current project is to inform resource managers as to the location 
of suitable and potentially suitable habitat for the species within the County by creating new 
spatial habitat models.    

3.2 Review of Draft Predictive Habitat Models 
The draft predictive habitat models from the DCP did prove useful in discovering new 
populations of all the target species and thus they fulfilled their purpose.  From an accuracy 
standpoint, though, the models were over-predictive (as expected) as can be seen where only 
56 out of the 547 total sites had target species found.   It must be kept in mind though, that due 
to cost limitations only a small percentage of the County that was predicted as habitat was 
actually surveyed.  Surveys were also not conducted within a 4 hectare buffer around previously 
known species occurrence records.  In addition, although a target species was not observed, 
the habitat predicted by the model may have still been present.  This was the purpose of 
requiring ICF to collect information on the soil types and any indicator species present at each 
location. 

One of the main weaknesses of the draft models was that there were no geologic maps that 
covered the entire County at a large enough scale to be useful (1:150k or lower).  Therefore, the 
models were composed of portions of several different geology maps with different mapping 
schemes and resolutions.  This was especially true for the southeastern portion of the County 
where the 1:250k statewide geology map was used because no larger scale maps were 
available.  This caused that area of the County to be greatly over-predictive for sand habitat. 

In addition, there are three separate SSURGO soil maps for the County and no soil survey has 
been completed for the northwestern portion of the County.  The soil surveys were completed at 
different times and thus have differences in the quality of the mapping and the amount of 
specific soil information available.  The draft predictive sand models did use SSURGO sand 
data as a factor in the models but because no data was available for the northwest corner, this 
area was less detailed than other areas of the County. 

For the gypsum models, the lack of cohesive geologic maps for the County also created issues.  
Spring deposits were determined to be an important geologic unit for the gypsum plants but this 
unit has not been mapped at the same level of detail in the geologic maps used.  Due to the 
coarse scales used for some of the maps, many smaller gypsiferous geologic units were not 
mapped.  In addition, many large geologic units were categorized as gypsiferous when only a 
small portion of the entire unit may actually be gypsiferous.  This results in an over-prediction of 
the amount of gypsiferous soils in some areas. 
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The original models also did not incorporate the known elevation range of the species as is 
typical in habitat modeling exercises (Aitken et al, 2007; Boykin et al, 2008).  The elevation 
range was purposely left out to not bias the survey efforts to only the previously known elevation 
ranges.   

3.3 Model Refinement Options 

3.3.1 Maxent 
One of the common habitat modeling software tools in use today is Maxent (Phillips et al, 2006).  
With Maxent, the user provides a table of known occurrence locations along with gridded data 
that can be either continuous (e.g., elevation, climate) or categorical (e.g., vegetation).  Maxent 
overlays the points on the background layers to produce the habitat model.  The software uses 
all the input data layers provided to create the model but does report on the effect of each layer 
on the model.  Thus the models tend to be run iteratively by the user, eliminating layers in each 
subsequent run that do not have much influence on the model.   The decision about a 
background layers importance, though, is up to the user and can be highly subjective.  

For this modeling exercise, the use of categorical data in Maxent can produce over-predictive 
models due to issues with the resolution and accuracy of the GIS data along with the accuracy 
of the occurrence data.  As an example, assume that a species is known to exist only on soil 
type A and not on soil type B.  Mapping resolution or errors in the GIS soil map or species 
occurrence records can lead to some occurrence records falling within areas mapped as soil 
type B.  Maxent does not know these are errors and thus will produce a habitat model that 
includes both soil types.  Therefore, Maxent was determined to not be useful to refine the soils 
based habitat models. 

3.3.2 Other Modeling Options 
Because Maxent alone was not a desirable modeling option for this exercise, it was decided to 
instead refine the models through manual selection of suitable polygons based on their 
attributes for a variety of factors similar to how the original predictive habitat models were 
created.  Since the creation of the original predictive habitat models, a 1:150k surficial geology 
map for the County has been created by the University of Nevada Reno (UNR) under contract 
with the DCP (House et al, 2010).  We reviewed the use of the new geologic map in conjunction 
with the original predictive habitat models to see if it would help refine the original models.  
Unfortunately it did not provide much improvement to the original models by itself.  The 
SSURGO soil maps were also reinvestigated to see if they could be used to improve the models 
but were found to still be difficult to use.  The weaknesses in the original predictive habitat 
models were still present. 

One option was to refine the original sandy and gypsiferous soil models developed by 
TerraSpectra.  The field survey results would provide new training locations and absence 
information that could be used to refine the original ASTER classifications.  In addition, the 
refined ASTER classifications could be combined with the new UNR geologic map instead of 
the multiple maps used originally.  Because this appeared to be the best option, the decision 
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was made by the DCP to contract with TerraSpectra again to refine the original sandy and 
gypsiferous soil models.  

3.4 Refinement of Sand and Gypsum Models 
The following sections summarize the methods used by TerraSpectra to refine the gypsum and 
sand soil models that were used in the creation of the EPG refined habitat models.  For a more 
detailed description of their methods, refer to the metadata provided with the sand and gypsum 
models (TerraSpectra, 2011). 

3.4.1 Sandy Soil Model 

3.4.1.1 Geology Refinement 

As mentioned earlier, the recent completion of the UNR 1:150k surficial geologic map for the 
County was the impetus to refine the sand model produced by TerraSpectra.  It was determined 
that the eolian class on the new geologic map was highly spatially consistent with known 
locations of "sandy" plants. Therefore, the geologic map was attributed with two classes: Non-
eolian = 0; Eolian = 5.  Sand from these eolian deposits can be blown up onto neighboring non-
eolian geologic units.  This un-mapped blown sand can provide habitat for the species of 
interest.  Therefore, it was decided to create a 100 meter buffer around the eolian geologic units 
that was assigned a code of 2.  In addition, the known locations of "sandy" plants were found to 
be highly negatively spatially correlated with bedrock, hillslope deposits, and the Lake Mead 
Reservoir (2009 level). Thus an additional field was added with the following codes: Bedrock, 
Hillslope, or 2009 Lake Mead = 0; All other geologic units = 1. Unlike the first sand model where 
multiple geologic units were considered “sandy”, for the refined model, only the eolian geologic 
unit type and the 100 meter buffer around these units were considered “sandy” based on the 
geologic map. 

3.4.1.2 SSURGO Refinement 

Similar to the first sand model, SSURGO was used as one of the inputs but this time with a 
different coding scheme.  The area weighted percent sand within the top one foot of soil was 
again used as the metric.  Based on this metric, the SSURGO maps were recoded into 3 
classes:  Less than 80 percent sand = 0; Between 80 and 90 percent sand = 1; Greater than 90 
percent sand = 2.   

3.4.1.3 ASTER Refinement 

ASTER imagery was again used to identify quartz as a surrogate for sand.  The same 14 
ASTER images used in the creation of the gypsum model were used for the new sand model.  
Similar to the methods used in producing the original sand model, PCA was performed on the 
VNIR and SWIR image bands and the results were used in a supervised classification.  Known 
locations of sand plants and eolian geologic units were used to help determine threshold levels 
for the classification.  The classification resulted in three codes: Strong quartz presence likely = 
2; Moderate quartz presence likely = 1; Insufficient quartz presence likely = 0.  Refer to the 
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metadata provided by TerraSpectra for a more detailed description of how the ASTER imagery 
was analyzed (TerraSpectra, 2011). 

3.4.1.4 Combined Sand Soil Model 

The recoded geologic, SSURGO, and ASTER classification maps were then combined into a 
single map.  The codes for each of the maps were then totaled to produce an overall “sand” 
score ranging from 0 (not sandy) to 9 (very high potential for sand).  The resulting total was then 
multiplied by the bedrock code from the geologic map.  This had the effect of converting the 
“sand” score to zero in areas of bedrock, hillslope, and the 2009 Lake Mead basin regardless of 
the SSURGO or ASTER code.  Because the ASTER map is actually a map of quartz, areas of 
sandstone receive a code of 1 or 2 even though they are actually solid rock.  The bedrock code 
of 0 therefore has the effect of converting the sandstone units back into being non-sand units. 

3.4.2 Gypsiferous Soil Model 

3.4.2.1 Geology Refinement 

Because the presence of gypsum in the soil is largely a function of the bedrock geology of an 
area, a surficial geologic map such as that produced by UNR of the County is not as helpful in 
mapping gypsiferous units.  Unfortunately, no medium or large scale bedrock geologic maps 
exist for the entire County.  Thus, similar to the original gypsum model produced by 
TerraSpectra, a combination of existing geologic maps was used to identify potentially 
gypsiferous geologic units.  For this refinement, they also used large scale (1:24k) scale 
geology maps where available in GIS format.  Therefore, for the refined model, six total medium 
(1:100k) and small (1:250k) scale geologic maps along with thirty large (1:24k) scale geologic 
maps were used to identify potentially gypsiferous geologic units throughout the County.  For a 
list of geologic maps used, refer to the metadata provided by TerraSpectra in the gypsum soil 
model.  The maps were merged with priority given first to the large scale (1:24k) maps, followed 
by the medium scale (1:100k) maps, and lastly by the small scale (1:250k) Geologic Map of 
Nevada (refer to the metadata provided by TerraSpectra for specific map citations).  

The geologic map units for the compiled map were then recoded into the following classes: 
gypsiferous (unit was described as gypsiferous);  gypsiferous, partially or locally (unit was 
described as partially or locally gypsiferous); spring deposit  (spring or ground-water discharge 
deposit not described as gypsiferous); spring deposit, gypsiferous  (spring or ground-water 
discharge deposit that was described as gypsiferous); spring deposit, gypsiferous, partially or 
locally (spring or ground-water discharge deposit  that was described as partially or locally 
gypsiferous); other  (unit not described as gypsiferous).  TerraSpectra then assigned a numeric 
gypsum score to each map unit as follows: Gypsiferous = 2; Gypsiferous, Partially or Locally = 
1; Spring Deposit = 1; Spring Deposit, Gypsiferous = 2; Spring Deposit, Gypsiferous, Partially or 
Locally = 1; Other = 0.   

3.4.2.2 ASTER Refinement 

The same ASTER imagery that was used in the creation of the initial gypsum model was used 
for the refined version.  A mosaic of 14 ASTER images from 2004 was used to create a 
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decorrelation enhancement image. This decorrelation enhancement image was used as the 
input for a supervised classification to identify potential gypsiferous areas. The compiled 
geologic map, the location of past and present gypsum mines from the USGS MRDS (accessed 
online 9/23/08), and two field trips conducted during the creation of the initial gypsum model 
were used to identify thirty gypsum training sites. The large scale (1:24k) geologic maps were 
used to help verify and control the classification. The result was an image classified into three 
possible values: Non gypsiferous = 0; Somewhat likely gypsiferous = 1; More likely gypsiferous 
= 2. 

3.4.2.3 SSURGO Refinement 

Even though SSURGO was used as a tool in the initial gypsum model for identification of 
potential gypsum habitat, it was not used as an input in the first gypsum model produced by 
TerraSpectra.  Because SSURGO may identify areas with high gypsum that are not identified in 
the geologic maps or identified by the ASTER imagery, it was decided to add SSURGO as an 
input into the new refined gypsum model.  The combined SSURGO maps were recoded into the 
following classes based on the area weighted amount of gypsum within the top one foot of the 
soil:  Gypsum greater than or equal to 23 percent = 2; Gypsum greater than or equal to 5 
percent and less than 23 percent = 1; Gypsum less than 5 percent = 0.  

3.4.2.4 Combined Gypsiferous Soil Model 

The recoded geologic, ASTER, and SSURGO maps were then combined to form the final 
refined gypsum model.  The codes from each of the maps were totaled to produce an overall 
“gypsum” score ranging from 0 (non-gypsiferous unit) to 6 (highly likely gypsiferous with a score 
of 2 from each input layer).  Playas and playa fringes in the County are often gypsiferous but are 
not considered potential habitat for any of the plant species of interest in this study.  Therefore, 
playas and playa fringes were given a code of -1 and were considered non-gypsiferous in the 
subsequent habitat modeling.   

3.5 Refinement of Individual Species Habitat Models 
Once TerraSpectra refined the sandy and gypsiferous soil models, the next step was to use 
those new models to create refined predictive habitat models for each of the rare plant species. 

3.5.1 Sand Species Models 
For the sand species, each model was first refined using the known or expected elevation range 
within Nevada for each species.  This information was gathered from the Nevada Natural 
Heritage Program (NNHP) Nevada Rare Plant Atlas (NNHP, 2001) and the LERPCMS.  The 
elevation ranges were compared with the available occurrence data including the new data from 
the ICF 2009-10 field surveys to verify that the elevation range would encompass all the 
occurrences within the County.  A slightly broader range was used by rounding up or down the 
elevations.  Elevation was not used to clip the models.  Instead, polygons were only removed if 
the entire polygon was outside of the elevation range.  If the elevation range of the polygon 
overlapped with a species elevation range, it was retained in the model even if most of the 
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polygon was outside of the elevation range.  Clipping the polygons with elevation would have 
resulted in many sliver polygons at the edges of the elevation range which was undesirable.   

The occurrence data for each species was then intersected with the sand model to analyze any 
patterns that could be used to help further refine the models.  This included identifying any 
geologic, ASTER, or SSURGO score or combination of scores that did not have any known 
occurrences for a species.  These categories were assumed to not be suitable habitat and thus 
removed from the individual species predictive habitat model.   

Some categories or combinations only had a few occurrences.  The occurrences in these 
categories were investigated further to analyze whether to retain these categories in the model 
or not.  Some of these occurrence records were at the edge of a polygon, next to a polygon type 
with several other occurrence records.  If so, it was concluded that these edge occurrences 
were most likely in the habitat type of the neighboring polygons and that the category could be 
removed from the model.  Some of the occurrence records were of questionable accuracy and 
were dropped which may have led to the category being removed from the model also.  If the 
occurrence data could not be explained by edge effects or location errors, the categories were 
retained in the model even if they only contained a few occurrences.  Thus professional 
judgment was used in determining which categories from the sand model could be removed to 
further refine the individual species predictive habitat models. 

Besides elevation and the sand model coding, other SSURGO soil attributes and geologic unit 
codes were investigated for their usefulness in refining the models.  For SSURGO, the use of 
soil series name, percent of surface fragments, and percent of rock within the soil was analyzed.  
Except where discussed below, the use of these other factors did not prove useful in refining the 
models.  This was due to the species occurring on a wide range of the possible types. 

3.5.1.1 White Margined Penstemon 

The elevation range used to refine the white margined penstemon model was 800 to 1100 
meters.  The model was then refined by removing all polygons that did not cross a SSURGO 
mapunit having either a Bluepoint, Birdspring, Commski, or Prisonear soil series type within the 
unit.  These soil series tend to have a low surface rock fragment cover and a sand content 
greater than 80 percent.  The majority of known occurrences in the County occur on Bluepoint, 
Birdspring, or Prisonear soil types with other locations occurring just on the edge of these soil 
types.  The occurrence data available for the Nye County population are on Bluepoint and 
Commski soils.  Finally, any polygon that had only an ASTER quartz signature and was not 
indicated by geology or soils to be sandy was removed.  The known occurrences were only on 
areas indicated by the geologic or SSURGO classifications to be high sand. 

3.5.1.2 Threecorner Milkvetch 

The threecorner milkvetch model was initially refined using an elevation range of 325 to 750 
meters.  The model was then refined by removing polygons with the following attributes: areas 
with sand between 80-90% but an ASTER signature below 2; eolian areas with sand below 80% 
and no ASTER quartz signature.  When only part of an eolian unit met the above criteria but 
another part had an ASTER quartz signature of 2, the whole unit was still retained.  Essentially 
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these cuts removed areas that are lower in sand content, as determined by SSURGO or ASTER 
classifications, than the areas with known occurrences.   

3.5.1.3 Pahrump Valley Buckwheat 

The Pahrump Valley buckwheat model was refined with an elevation range of 700 to 860 
meters.  The model was further refined by eliminating all non-eolian areas and then further 
eliminating those eolian areas with an ASTER signature and areas mapped by SSURGO as 
having sand content above 80%.  It was then further refined by removing areas with greater 
than 23% surface fragment cover.  Essentially, while Pahrump Valley buckwheat occurs on 
sandy soils, those soils appear to be not as sandy as the soils for the other sand species.  It 
also appears it may be on sand that isn’t dominated by quartz and does not have a strong 
ASTER quartz signature.  The difficulty in modeling this species is that the majority of its 
occurrences are in Pahrump and Stewart valleys in Nye County, Nevada, and neighboring Inyo 
County, California, outside of the Clark County study area.    

3.5.1.4 Sticky Buckwheat 

The sticky buckwheat predictive habitat model was initially refined using an elevation range of 
360 to 715 meters.  The ICF surveys found a potential occurrence of the species along the 
upper reaches of the Muddy River at a higher elevation than the published range.  Thus, the 
elevation range for this species was expanded to include this potential occurrence.  This 
occurrence has not been verified and may be a misidentification.  The model could be refined 
using a narrower elevation range in the future if this occurrence turns out to be a 
misidentification.  Similar to threecorner milkvetch, the sticky buckwheat model was further 
refined by removing areas with sand between 80-90% but ASTER below 2 and eolian areas 
without an ASTER signature.  Again, this removes areas lower in sand content as determined 
by SSURGO or ASTER.  Finally, areas with a geologic type of Avxk (as defined in House et al, 
2010), or sand sheets over calcrete, were removed.  This Avxk unit only occurs on top of 
Mormon Mesa and was not included in the original model.  Sticky buckwheat seems to occur in 
sandy areas mostly along large drainages and is possibly gaining habitat along the margins of 
Lake Mead as the water level recedes.   

3.5.1.5 Beaver Dam Breadroot 

The Beaver Dam breadroot model was first refined using an elevation range of 390 to 750 
meters.  The NNHP reported range includes a record for breadroot at 1524 meters on the north 
slope of the Spring Mountains that was collected in 1964.  This record is questionable due to its 
disjunct nature from the rest of the known occurrences.  There is another species of 
Pediomelum in the Spring Mountains (Niles and Leary, 2007) and this record may be an 
individual of that species which was misidentified.  This occurrence and its elevation were not 
used as part of the analysis.  Instead, the upper elevation was determined using the other 
known occurrences.  The model was then refined to remove those areas without an ASTER 
signature and non-eolian areas with an ASTER signature but a sand content of 80-90%.  Thus 
the model depicts areas with high levels of sand as indicated by the ASTER signature and the 
SSURGO sand content. 
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3.5.2 Gypsum Species Models 
Like the sand species models, the first level of refinement with the gypsum species models was 
with elevation range.   Unlike the sand species models, the use of SSURGO gypsum codes or 
the ASTER gypsum signature codes were not helpful in refining the models further.  In addition, 
because the gypsum soil model includes geologic units from multiple sources, the use of the 
geologic unit codes to refine the models is problematic because the map sources did not use a 
standardized code system.  Thus, similar geologic units that occur on multiple source maps may 
have different codes.    Other than the Las Vegas buckwheat model, the other models were not 
further refined using the geology, ASTER, or SSURGO layers.  The exception to this is the 
small polygons in the southeastern portion of the County that had only an ASTER gypsum 
signature and were not near any gypsiferous geology or soils.  These small polygons were 
removed from all of the models.   

3.5.2.1 Las Vegas Buckwheat 

The Las Vegas buckwheat model was first refined using an elevation range of 570 to 1180 
meters.  The model was further refined by eliminating polygons with a gypsiferous geologic 
score of 2.  The majority of the known Las Vegas Buckwheat occurrences are on spring deposit 
geologic units with the others on geology with a gypsum score of 0 or 1.  Based on 
observations, many of the occurrences are in the run-off from higher gypsum content areas 
indicating that the species may not be able to tolerate high gypsum contents.  There may also 
be some other soil chemistry reason the species prefers spring deposits and that condition may 
only be present in a few non-spring deposit units. 

3.5.2.2 Las Vegas Bearpoppy, Sticky Ringstem, White Bearpoppy 

The Las Vegas bearpoppy model was refined using an elevation range of 300 to 1120 meters. 
The sticky ringstem model was refined using an elevation range of 360 to 725 meters.  The 
white bearpoppy model was refined using an elevation range of 600 to 1920 meters.  The white 
bearpoppy model, as discussed in more detail below, does not capture most of the species 
locations in the County which was true for the initial predictive habitat models also. 

3.6 Model Discussion 
Overall, elevation was the biggest factor in helping refine the models from the general soil 
models.  The initial models purposely did not include elevation as a factor so as to not bias the 
models to only those elevations where surveys had been conducted previously.  Elevation, 
although not directly used in the creation of the initial models, was incorporated as a filter for 
most of the geographic units to remove high elevation locations.  One occurrence of sticky 
buckwheat, pending positive identification, was found outside of its published elevation range.  
The rest of the occurrences during the ICF 2009-10 surveys were within the previously 
published ranges.   

There may be other factors that could have been used to help refine the models.  For example, 
there may be other soil parameters within the SSURGO database that could be used to refine 
the models for specific species.  The sand models used an area weighted average of the 
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amount of sand within the first foot of soil.  Depending on rooting depth, the first foot of soil may 
not be the best determinate for each species.  Some may only require 6 inches or less of sand 
on the surface due to shallow roots while other may require even deeper sand due to deep 
roots.  The investigation of additional SSURGO soil factors or other factors was out of the scope 
of this model refinement contract.  

As with any GIS based habitat modeling, the quality of the models is heavily dependent on the 
accuracy and quality of the input GIS data used to create the model.  Some of the over or under 
predictions in each of the models may be due to errors or scale issues in the geologic or soils 
maps used as input layers in creating and refining the models.  The accuracy of the occurrence 
data can also lead to problems when refining the models and interpreting their quality. 

3.6.1 Sand Plant Models 
The use of the UNR surficial geologic map was an improvement over the initial draft models use 
of multiple geologic maps.  The use of SSURGO soils and ASTER information in addition to the 
geology helps to identify other potentially sandy areas not mapped as eolian.  There may still be 
some issues with using SSURGO because there are three separate soil series that cover only 
part of the County.  Some of the refinements may be artifacts of differences in the soil surveys 
and not true differences.  In addition, the lack of a soil survey for the northwestern portion of the 
County does affect some of the models.  For white-margined penstemon, the model had 
suitable habitat in the northwestern corner due to the lack of soil survey information that could 
be used to refine the model based on soil type.  NRCS is currently conducting a soil survey over 
a portion of the Sheep Range which could be incorporated into the model to help refine the soil 
models in the future. 

ASTER indicates stronger quartz signatures in the northern portion of the County versus the 
southern portion.  It is unknown whether the sands in the northern portion of the County are 
higher in quartz content than those in the southern portion or whether this difference is due to 
other factors such as vegetative cover, overall reflectance of the soils, ruggedness of the areas, 
barren rock outcrops versus soil exposure, etc.  The causes of the differences in the ASTER 
signature, in addition to elevation, may be a clue to differences in the distribution of the species. 

3.6.1.1 Gypsum Plant Models 

Because gypsum is a function of the bedrock type, the UNR surficial geologic map of the 
County was not useful in refining the model except for the consistently mapped spring deposits.  
The use of multiple sources for geologic maps still leads to the inability to refine the models 
based on actual geologic unit types which would be ideal.  For example, there are several 
geologic units west of Las Vegas valley that are coded as gypsiferous and indeed, there are 
gypsum mines in some of these areas.  These hills, though, may be a different geologic unit 
type than the gypsiferous units where the species occur since the gypsum on these units is 
mostly under the surface and not exposed.  Since the coding between geologic maps is not 
uniform, these units cannot be excluded by geologic code.  It would probably take significant 
effort to standardize the coding between all the maps.  The use of 1:24k geology maps 
improved the models over the original models by adding more detail.  Unfortunately, only a 
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subset of the County has digital 1:24k geology maps available even though some of these maps 
cover areas of the County with a large area of gypsum habitat such as Rainbow Gardens.  
Ideally, as additional 1:24k geology maps become available, they could be incorporated into the 
gypsum model. 

Even though the EPG models do better than the original predictive habitat models, the new 
models still miss some of the known occurrences for each of the species.  These species, 
especially the bearpoppies, can occur in very small patches on geologic units that are too small 
to be mapped at the scale of even 1:24k.  Some of the patches are also small enough to not be 
picked up by the ASTER imagery.   The species are also known to be found on units that are 
not necessarily considered gypsiferous but gypsum is likely present in the soil due to erosion 
from the neighboring gypsiferous units.  This can be seen by the population of Las Vegas 
buckwheat in Gold Butte that does not occur on what the model calls gypsum but is surrounded 
by gypsiferous units that are probably eroding down into the wash.  If desired, this could be 
dealt with by buffering the models to help capture these additional erosion based areas. 

Similar to the draft model, the new model for white bearpoppy is still weak and misses the 
majority of the known occurrences.  This species can occur on very small outcrops and can 
occur on not only gypsum but also carbonate soils (NNHP, 2001).  Thus a strictly gypsum based 
model is probably not the best approach.  In addition, this species range extends into Lincoln 
and Nye County, Nevada and Inyo and San Bernardino County, California.  Thus only a small 
portion of its overall range is being modeled. 

3.7 Addition of Survey Attributes 
Once the models were completed, each model was attributed with information on whether a 
polygon had a known occurrence within the polygon including the results of the ICF rare plant 
surveys, whether there was a known occurrence within 10 meters of the polygon, whether a ICF 
rare plant survey was done in part of the polygon and the species was not found, or whether a 
polygon had no known occurrences and no known survey has been conducted within the 
polygon.  These attributes should not be assumed to mean that the species is present 
throughout the whole polygon or that the species is definitely absent from the polygon.  In 
addition, the ICF rare plant surveys may have only surveyed a very small portion of the polygon 
and not the entire polygon.  The presence data is only as good as the input occurrence data and 
therefore should not be construed to mean definitive presence.  Because of the unknown 
positional accuracy of some of the occurrence records and the fact that some points actually 
represent a population of the plants over a larger area, the “occurrence within 10 meters” was 
added to identify areas near occurrence records that are likely to have the species also. 

These attributes could be useful for the users of the models because it provides information on 
where in the model the species is known to occur and what areas of the model may warrant 
additional survey efforts before management decisions are made.  As additional surveys are 
performed, new occurrence records or “absence” information should be added to the models to 
keep the models current.  
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3.8 Assessment of Model Accuracy 
The habitat models are designed to depict predicted suitable habitat for each of the species and 
not necessarily depict only the actual occurrence of a species.   As such, the models are 
expected to depict more area than just where a species occurs.  In addition, the models do not 
necessarily identify all areas where a species occurs as being suitable habitat due to issues with 
the scales of the maps and any errors that might be present in the maps used to create the 
sand and gypsum models.  These issues should be kept in mind when trying to discuss the 
accuracy of the habitat models.   

The attribution of the models with whether there are known occurrences or whether partial 
surveys have been performed without finding the species does give some idea as to how much 
the models may overpredict the habitat for a species.  The absence information should be used 
with caution, because rarely has the whole polygon been surveyed and absence during one 
survey does not definitively indicate that the species is not present in other years (i.e., annual 
species may not be found in dry years, but the seeds are still present in the soil).  Also, absence 
does not mean that the area is not suitable habitat.  The area may be suitable habitat but the 
species is not present due to other reasons such as the seeds not having reached the area.   

3.9 Climate Based Models 
Some of the sand and gypsum predictive based models still appeared to overpredict the 
geographic extent of possible suitable habitat for some species and the white bearpoppy model 
is a poor predictor of the species occurrence in general.  In addition, one of the original species 
of interest, two-tone beardtongue, is neither gypsum nor a sand species.  Instead, it occurs 
mostly in rocky and gravelly drainages and along roadsides, therefore a gypsiferous or sandy 
soil-based model was not created.    

Another form of habitat model is one created using climate data to model the climatic ranges of 
the species occurrence.  These models are often created in Maxent using climate variables 
modeled for the whole world at around an 800 meter pixel resolution (Worldclim Bioclim data – 
Hijmans et al, 2005).  Since the models are relatively quick to run, a climate model was created 
for each species, including two-tone beardtongue, using Maxent.  See Appendix C for the 
outputs from the Maxent runs.  The grid outputs from Maxent were recoded into 1 (suitable) or 
null (not suitable) using the Maxent computed threshold of equal specificity and sensitivity 
(Boykin et al, 2008).  The recoded grids were then converted into polygons representing the 
modeled climate based distribution. 

The climate models included in Appendix C were run using all the available occurrence data for 
each of the species, including occurrence data outside of the County.  This occurrence data, 
though, may still not represent the full range of the species occurrence and thus the climate 
models may not reflect the full range of a species’ climatic limits. The drawback in using climate 
data is that using points from a subset of a species range versus its entire range can produce 
very different results.  The Maxent results from using just the County occurrences for white-
margined penstemon are provided at the end of Appendix C.  As one can see, the predicted 
suitable habitat using just County data is much smaller than the predicted suitable habitat using 
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all the data.   Thus, not using data over the entire distribution does not accurately capture the 
species full climatic range.   

For the species with sandy or gypsiferous soil-based models, the climate based models could 
be used to clip those models to produce a model representing both the soil based and climate-
based suitable habitat.  Most of the soil-based models already match fairly well with the climate 
models with only some outlying polygons.  This is understandable because elevation was used 
as a filter in the soil based models and climate is highly correlated with elevation at a local 
scale.  The species with larger differences between the soil and climate based models tended to 
have much wider distributions than just in the County.  For white bearpoppy and two-tone 
beardtongue, the climate based model by itself may be the best model choice due to reasons 
stated previously.  A better soils and geology based model may be able to be created for white 
bearpoppy by expanding the geographic scope of the model and also looking at carbonate soil 
types.  It is unknown if a soils or geology based model could be created for two-tone 
beardtongue. 
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4.0 GENERAL DISCUSSION 

There is a great deal of uncertainty in resource management.  Resource managers are faced 
with making landscape level decisions everyday with limited information, data, and funding.   
Models are used as way of reducing the uncertainty when making decisions.  As is well known 
models never reflect reality.  George Box wrote “All models are wrong, but some are useful.”  
They are meant to be used as a tool to provide understanding of the complexities of the topic of 
interest.   In that mode, a predictive habitat model provides managers with a tool to better 
survey for, manage, and make decisions about a species for which the actual, complete 
distribution is not known.  A habitat model also provides a starting point when studying the 
natural history of a species. 

The original draft models developed by the DCP and TerraSpectra were useful in finding new 
populations of the target species, and were an improvement over the TNC buffered populations.  
The way the models were developed showed that using soils and geological information from 
multiple sources was helpful and that no one single input layer was sufficient in modeling the 
plants habitat.  The weaknesses in the original and updated habitat models do point out the 
need for things like a really good geologic map or really good soils maps.  The soils and 
geologic maps must also map the soil types of interest.  SSURGO maps are mostly focused on 
mapping soils suitable for agriculture and thus in some cases do not capture the soil 
characteristics needed for mapping rare plant habitat such as percent gypsum.  In addition, a 
detailed surficial geologic may be useful for identifying sandy soils but is not as useful in 
identifying soil types more influenced by the bedrock such as gypsum.  The reverse is true for 
trying to use detailed bedrock geology maps to identify surficial soil types like sand.  The 
modeling efforts also showed the difficulties in trying to model species habitat within a political 
boundary without the ability to take the full species distribution into account.   

The modeling efforts were based upon the idea that the species, except for two-tone 
beardtongue, either occurred on gypsiferous or sandy soil.  Describing plants as gypsum or 
sand plants is an oversimplification of the natural history of the plants, which adds difficulty in 
the.  The best example is Pahrump Valley buckwheat where it is considered a sand plant 
(occurring primarily in sand) but may require some level of clay content also, and not just pure 
sand.  For two-tone beardtongue, creating a soil based habitat model would present its own 
challenges and would likely be very overpredictive.  As mentioned, two-tone beardtongue is 
found on rocky and gravelly soils.   In the County, these soils are very common and can 
probably be found in the majority of the SSURGO soil or geology map units. 

The importance of absence data was also highlighted during the project.  Historically surveys 
were conducted to only collect data on species presence.  It is important to not only collect 
presence data but also absence data.  Documentation of a species absence provides a greater 
understanding of the species full distribution and natural history.  The Las Vegas buckwheat has 
historically been characterized as a gypsum plant, but through the modeling effort, more of the 
locations were found to on spring deposits and the species was found to be absent from many 
non-spring deposit areas with gypsiferous soils.   Documented absence data or a full species list 
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for an area can provide guidance to management when making decisions about an area thought 
to have suitable habitat for a given species.  Absence data also provides documentation that an 
area has been surveyed instead of just relying on institutional knowledge about where a species 
does or does not occur.   This institutional knowledge is easily lost as employees change jobs or 
retire.   

The surveys performed as part of the DCP project did provide documentation of where the 
surveys were conducted and whether a species was observed or not.  This type of 
documentation is not necessarily an easy task.  Most species occurrence data is documented in 
GIS as point dataset but absence data is not point based.  Documenting absence requires 
documenting the area where the surveys were conducted, preferably as a polygon, including 
documenting all species present.   In addition, absence data does not automatically mean a site 
should not be surveyed again.  In the case of annuals (and some perennials), a species may be 
found one year and not the next due to rainfall events, drought, and survey timing compared to 
plant phenology.  We can and should do a better job of tracking absence data.   

This project also highlights the need for reliable occurrence data where the positional accuracy 
of the data and the methods used to collect the data are known.  This project used occurrence 
data from multiple sources with different levels of quality.  The data sets from multiple projects 
were used because no single dataset represented the full distribution of any of the target 
species.  Some of the datasets contain highly accurate location information for individual plants.  
Other datasets contain single points representing entire populations.  Some datasets, though, 
contain points for which it is not known whether they represent individual plants or populations.  
The positional accuracy of these datasets can also be coarse or even unknown at times.  In 
other words, is the point accurate within a mile, 5 meters, or 2 meters?  For example, NNHP 
creates polygons around the points or populations which are buffered by the positional 
uncertainty.   This makes developing habitat models with the use of the occurrence data 
challenging at times.  A few occurrence points for some of the species were not used in the 
analysis due to their questionable location.  The use of inaccurate occurrence location data can 
lead to the inclusion or removal of habitat types in the model that can lead to the over or under 
prediction of potential habitat. 

4.1 Potential Future Improvements to Models 
There are multiple options for improving the habitat models in the future if desired.  The gypsum 
habitat models are still composed of geologic maps from multiple sources and scales.  As more 
1:24k geology maps become available, these could be incorporated into the model.  These 
maps provide more detail than the smaller scale maps and also provide more information on 
potentially gypsiferous geologic units.  Another option for improving the gypsum models in the 
future would be to try to standardize the geologic coding schemes used in the different maps 
and then identify the potentially gypsiferous units that are also potential habitat for the species 
of interest.  Not all gypsiferous geologic units are necessarily potential habitat for a “gypsum-
loving” species.  The gypsum may not be at the surface such as the gypsiferous geologic units 
west of Las Vegas valley where there are gypsum mines but most of the gypsum is not at the 
surface of the soil.  Other gypsiferous units may be too high in gypsum for some species.  The 
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coding of the gypsiferous units needs to be standardized to ensure similar geologic units are 
being compared between maps. 

For the sand models, it may be possible to identify other soil parameters from the SSURGO 
surveys that could be used to further refine the models.  In addition, when the soil survey for the 
Sheep Range is completed, the map could be incorporated into the model to help fill in where 
SSRUGO soils information is missing. 

As mentioned earlier, the models should be updated as new occurrence or absence data 
becomes available.  This will ensure that management decisions that are made using the 
models are using the most current data available.  The new occurrence and absence data will 
also allow for continued improvement of knowledge about a species distribution and natural 
history. 
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Appendix B 
Climate Based Models 
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Appendix C 
Maxent Results 
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This appendix includes the outputs from the Maxent climate based model run for each of the 
species.  The models were run using the WorldClim Bioclim climatic data sets 
(www.worldclim.org/bioclim - accessed February 2011).  The datasets used are as follows: 
 

BIO1 = Annual Mean Temperature 

BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

BIO3 = Isothermality (BIO2/BIO7) (* 100) 

BIO4 = Temperature Seasonality (standard deviation *100) 

BIO5 = Max Temperature of Warmest Month 

BIO6 = Min Temperature of Coldest Month 

BIO7 = Temperature Annual Range (BIO5-BIO6) 

BIO8 = Mean Temperature of Wettest Quarter 

BIO9 = Mean Temperature of Driest Quarter 

BIO10 = Mean Temperature of Warmest Quarter 

BIO11 = Mean Temperature of Coldest Quarter 

BIO12 = Annual Precipitation 

BIO13 = Precipitation of Wettest Month 

BIO14 = Precipitation of Driest Month 

BIO15 = Precipitation Seasonality (Coefficient of Variation) 

BIO16 = Precipitation of Wettest Quarter 

BIO17 = Precipitation of Driest Quarter 

BIO18 = Precipitation of Warmest Quarter 

BIO19 = Precipitation of Coldest Quarter 

 

   

http://www.worldclim.org/bioclim
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Maxent model for Anulocaulis_leiosolenus 
 
Analysis of omission/commission 

The following picture shows the omission rate and predicted area as a function of the cumulative threshold. The 
omission rate is calculated both on the training presence records, and (if test data are used) on the test records. The 
omission rate should be close to the predicted omission, because of the definition of the cumulative threshold.  

 
The next picture is the receiver operating characteristic (ROC) curve for the same data. Note that the specificity is 
defined using predicted area, rather than true commission (see the paper by Phillips, Anderson and Schapire cited on 
the help page for discussion of what this means). This implies that the maximum achievable AUC is less than 1. If 
test data is drawn from the Maxent distribution itself, then the maximum possible test AUC would be 0.978 rather 
than 1; in practice the test AUC may exceed this bound.  

 
 



Some common thresholds and corresponding omission rates are as follows. If test data are available, binomial 
probabilities are calculated exactly if the number of test samples is at most 25, otherwise using a normal 
approximation to the binomial. These are 1-sided p-values for the null hypothesis that test points are predicted no 
better than by a random prediction with the same fractional predicted area. The "Balance" threshold minimizes 6 * 
training omission rate + .04 * cumulative threshold + 1.6 * fractional predicted area. 

Cumulative 
threshold 

Logistic 
threshold Description Fractional 

predicted area

Training 
omission 

rate 

Test 
omission 

rate 
P-value

1.000 0.003 Fixed cumulative value 0.240 0.000 0.000 4.533E-
5 

5.000 0.018 Fixed cumulative value 0.081 0.015 0.000 2.229E-
8 

10.000 0.056 Fixed cumulative value 0.034 0.030 0.143 1.014E-
8 

3.235 0.010 Minimum training 
presence 0.120 0.000 0.000 3.542E-

7 

41.329 0.566 10 percentile training 
presence 0.007 0.090 0.143 6.296E-

13 

10.121 0.058 Equal training sensitivity 
and specificity 0.033 0.030 0.143 9.107E-

9 

21.228 0.312 Maximum training 
sensitivity plus specificity 0.014 0.045 0.143 5.912E-

11 

6.723 0.028 Equal test sensitivity and 
specificity 0.058 0.015 0.000 2.345E-

9 

6.723 0.028 Maximum test sensitivity 
plus specificity 0.058 0.015 0.000 2.345E-

9 

3.235 0.010 
Balance training omission, 

predicted area and 
threshold value 

0.120 0.000 0.000 3.542E-
7 

10.888 0.072 
Equate entropy of 

thresholded and non-
thresholded distributions 

0.030 0.045 0.143 4.874E-
9 

 

  



Pictures of the model 
This is a representation of the Maxent model for Anulocaulis_leiosolenus. Warmer colors show areas with better 
predicted conditions. White dots show the presence locations used for training, while violet dots show test locations. 
Click on the image for a full-size version. 
 

 

  



 

Response curves 

These curves show how each environmental variable affects the Maxent prediction. The (raw) Maxent model has the 
form exp(...)/constant, and the curves show how the exponent changes as each environmental variable is varied, 
keeping all other environmental variables at their average sample value. Click on a response curve to see a larger 
version. 
 



 

Analysis of variable contributions 
The following table gives a heuristic estimate of relative contributions of the environmental variables to the Maxent 
model. To determine the estimate, in each iteration of the training algorithm, the increase in regularized gain is 
added to the contribution of the corresponding variable, or subtracted from it if the change to the absolute value of 
lambda is negative. As with the jackknife, variable contributions should be interpreted with caution when the 
predictor variables are correlated. 

Variable Percent contribution 
rastert_bio_3 58.4 
rastert_bio_13 19.1 
rastert_bio_6 6.2 
rastert_bio_11 2.9 
rastert_bio_1 2.7 
rastert_bio_7 1.9 
rastert_bio_5 1.7 
rastert_bio_4 1.6 
rastert_bio_8 1.6 
rastert_bio_2 1.3 
rastert_bio_17 0.8 
rastert_bio_18 0.7 
rastert_bio_12 0.5 
rastert_bio_15 0.4 
rastert_bio_10 0.2 
rastert_bio_14 0 
rastert_bio_19 0 
rastert_bio_16 0 
rastert_bio_9 0 
 
 



The following picture shows the results of the jackknife test of variable importance. The environmental variable 
with highest gain when used in isolation is rastert_bio_3, which therefore appears to have the most useful 
information by itself. The environmental variable that decreases the gain the most when it is omitted is 
rastert_bio_7, which therefore appears to have the most information that isn't present in the other variables. 

 
The next picture shows the same jackknife test, using test gain instead of training gain. Note that conclusions about 
which variables are most important can change, now that we're looking at test data.  

 
 



Lastly, we have the same jackknife test, using AUC on test data.  

 

Raw data outputs and control parameters 
 
Regularized training gain is 3.716, training AUC is 0.996, unregularized training gain is 4.039. 
Unregularized test gain is 4.203.  Test AUC is 0.990, standard deviation is 0.008 (calculated as in DeLong, DeLong 
& Clarke-Pearson 1988, equation 2).  Algorithm terminated after 500 iterations (13 seconds). 
 
The follow parameters and settings were used during the run: 
67 presence records used for training, 7 for testing. 
10067 points used to determine the Maxent distribution (background points and presence points). 
Environmental layers used (all continuous): rastert_bio_1 rastert_bio_10 rastert_bio_11 rastert_bio_12 
rastert_bio_13 rastert_bio_14 rastert_bio_15 rastert_bio_16 rastert_bio_17 rastert_bio_18 rastert_bio_19 
rastert_bio_2 rastert_bio_3 rastert_bio_4 rastert_bio_5 rastert_bio_6 rastert_bio_7 rastert_bio_8 rastert_bio_9 
Command line: 
Feature types used: Linear Quadratic Hinge 
Regularization multiplier is 1.0 
Regularization values: linear/quadratic/product: 0.144 categorical: 0.250 hinge: 0.500 
Species file is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all\gyp_plants_dd.csv 
Environmental variables from I:\rare_plant_data\habitat_modeling_maxent\worldclim\bio_30s_esri\bio_ascii_sw 
Output directory is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all 
Output format is Logistic 
Output file type is .asc 
Maximum iterations is 500 
Convergence threshold is 1.0E-5 
Random test percentage is 10 
Jackknife selected 
Remove duplicates selected 
Make pictures selected 
Create response curves selected 



Maxent model for Arctomecon_californica 

Analysis of omission/commission 

The following picture shows the omission rate and predicted area as a function of the cumulative threshold. The 
omission rate is is calculated both on the training presence records, and (if test data are used) on the test records. The 
omission rate should be close to the predicted omission, because of the definition of the cumulative threshold.  

 
The next picture is the receiver operating characteristic (ROC) curve for the same data. Note that the specificity is 
defined using predicted area, rather than true commission (see the paper by Phillips, Anderson and Schapire cited on 
the help page for discussion of what this means). This implies that the maximum achievable AUC is less than 1. If 
test data is drawn from the Maxent distribution itself, then the maximum possible test AUC would be 0.987 rather 
than 1; in practice the test AUC may exceed this bound.  

 
 



Some common thresholds and corresponding omission rates are as follows. If test data are available, binomial 
probabilities are calculated exactly if the number of test samples is at most 25, otherwise using a normal 
approximation to the binomial. These are 1-sided p-values for the null hypothesis that test points are predicted no 
better than by a random prediction with the same fractional predicted area. The "Balance" threshold minimizes 6 * 
training omission rate + .04 * cumulative threshold + 1.6 * fractional predicted area. 

Cumulative 
threshold 

Logistic 
threshold Description Fractional 

predicted area

Training 
omission 

rate 

Test 
omission 

rate 
P-value

1.000 0.004 Fixed cumulative value 0.128 0.003 0.000 6.01E-
63 

5.000 0.032 Fixed cumulative value 0.038 0.003 0.024 0E0 

10.000 0.208 Fixed cumulative value 0.020 0.011 0.024 0E0 

0.690 0.003 Minimum training 
presence 0.153 0.000 0.000 1.773E-

51 

42.975 0.582 10 percentile training 
presence 0.008 0.099 0.073 0E0 

18.172 0.379 Equal training sensitivity 
and specificity 0.015 0.016 0.049 0E0 

8.912 0.125 Maximum training 
sensitivity plus specificity 0.022 0.005 0.024 0E0 

7.845 0.096 Equal test sensitivity and 
specificity 0.024 0.005 0.024 0E0 

12.782 0.284 Maximum test sensitivity 
plus specificity 0.018 0.011 0.024 0E0 

2.294 0.011 
Balance training omission, 

predicted area and 
threshold value 

0.076 0.003 0.024 0E0 

6.808 0.063 
Equate entropy of 

thresholded and non-
thresholded distributions 

0.028 0.005 0.024 0E0 

 
 

  



Pictures of the model 
This is a representation of the Maxent model for Arctomecon_californica. Warmer colors show areas with better 
predicted conditions. White dots show the presence locations used for training, while violet dots show test locations. 
Click on the image for a full-size version. 
 

 

  



Response curves 
 
These curves show how each environmental variable affects the Maxent prediction. The (raw) Maxent model has the 
form exp(...)/constant, and the curves show how the exponent changes as each environmental variable is varied, 
keeping all other environmental variables at their average sample value. Click on a response curve to see a larger 
version. 
 



 

Analysis of variable contributions 
 
The following table gives a heuristic estimate of relative contributions of the environmental variables to the Maxent 
model. To determine the estimate, in each iteration of the training algorithm, the increase in regularized gain is 
added to the contribution of the corresponding variable, or subtracted from it if the change to the absolute value of 
lambda is negative. As with the jackknife, variable contributions should be interpreted with caution when the 
predictor variables are correlated. 

Variable Percent contribution 
rastert_bio_4 34.2 
rastert_bio_10 22.4 
rastert_bio_3 12.3 
rastert_bio_2 10.9 
rastert_bio_6 7.3 
rastert_bio_15 5.5 
rastert_bio_7 3.2 
rastert_bio_11 2.1 
rastert_bio_1 0.5 
rastert_bio_13 0.5 
rastert_bio_16 0.4 
rastert_bio_18 0.2 
rastert_bio_19 0.2 
rastert_bio_12 0.1 
rastert_bio_17 0.1 
rastert_bio_14 0 
rastert_bio_9 0 
rastert_bio_5 0 
rastert_bio_8 0 



The following picture shows the results of the jackknife test of variable importance. The environmental variable 
with highest gain when used in isolation is rastert_bio_4, which therefore appears to have the most useful 
information by itself. The environmental variable that decreases the gain the most when it is omitted is 
rastert_bio_7, which therefore appears to have the most information that isn't present in the other variables. 

 
 
The next picture shows the same jackknife test, using test gain instead of training gain. Note that conclusions about 
which variables are most important can change, now that we're looking at test data.  

 



Lastly, we have the same jackknife test, using AUC on test data.  

 

Raw data outputs and control parameters 
 
Regularized training gain is 2.868, training AUC is 0.996, unregularized training gain is 2.958. 
Unregularized test gain is 4.233. Test AUC is 0.995, standard deviation is 0.002 (calculated as in DeLong, DeLong 
& Clarke-Pearson 1988, equation 2). Algorithm terminated after 500 iterations (13 seconds). 
 
The follow parameters and settings were used during the run: 
374 presence records used for training, 41 for testing. 
10374 points used to determine the Maxent distribution (background points and presence points). 
Environmental layers used (all continuous): rastert_bio_1 rastert_bio_10 rastert_bio_11 rastert_bio_12 
rastert_bio_13 rastert_bio_14 rastert_bio_15 rastert_bio_16 rastert_bio_17 rastert_bio_18 rastert_bio_19 
rastert_bio_2 rastert_bio_3 rastert_bio_4 rastert_bio_5 rastert_bio_6 rastert_bio_7 rastert_bio_8 rastert_bio_9 
Command line: 
Feature types used: Linear Quadratic Product Threshold Hinge 
Regularization multiplier is 1.0 
Regularization values: linear/quadratic/product: 0.050 categorical: 0.250 threshold: 1.000 hinge: 0.500 
Species file is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all\gyp_plants_dd.csv 
Environmental variables from I:\rare_plant_data\habitat_modeling_maxent\worldclim\bio_30s_esri\bio_ascii_sw 
Output directory is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all 
Output format is Logistic 
Output file type is .asc 
Maximum iterations is 500 
Convergence threshold is 1.0E-5 
Random test percentage is 10 
Jackknife selected 
Remove duplicates selected 
Make pictures selected 
Create response curves selected 



Maxent model for Arctomecon_merriamii 

Analysis of omission/commission 

The following picture shows the omission rate and predicted area as a function of the cumulative threshold. The 
omission rate is is calculated both on the training presence records, and (if test data are used) on the test records. The 
omission rate should be close to the predicted omission, because of the definition of the cumulative threshold.  

 
 
The next picture is the receiver operating characteristic (ROC) curve for the same data. Note that the specificity is 
defined using predicted area, rather than true commission (see the paper by Phillips, Anderson and Schapire cited on 
the help page for discussion of what this means). This implies that the maximum achievable AUC is less than 1. If 
test data is drawn from the Maxent distribution itself, then the maximum possible test AUC would be 0.971 rather 
than 1; in practice the test AUC may exceed this bound.  

 



Some common thresholds and corresponding omission rates are as follows. If test data are available, binomial 
probabilities are calculated exactly if the number of test samples is at most 25, otherwise using a normal 
approximation to the binomial. These are 1-sided p-values for the null hypothesis that test points are predicted no 
better than by a random prediction with the same fractional predicted area. The "Balance" threshold minimizes 6 * 
training omission rate + .04 * cumulative threshold + 1.6 * fractional predicted area. 

Cumulative 
threshold 

Logistic 
threshold Description Fractional 

predicted area

Training 
omission 

rate 

Test 
omission 

rate 
P-value

1.000 0.013 Fixed cumulative value 0.174 0.000 0.000 6.355E-
19 

5.000 0.082 Fixed cumulative value 0.095 0.009 0.000 2.639E-
25 

10.000 0.171 Fixed cumulative value 0.068 0.019 0.000 9.555E-
29 

1.513 0.021 Minimum training 
presence 0.151 0.000 0.000 2.071E-

20 

26.185 0.371 10 percentile training 
presence 0.035 0.097 0.042 1.048E-

32 

16.952 0.264 Equal training sensitivity 
and specificity 0.050 0.051 0.000 5.681E-

32 

12.238 0.207 Maximum training 
sensitivity plus specificity 0.061 0.019 0.000 7.046E-

30 

22.257 0.337 Equal test sensitivity and 
specificity 0.041 0.069 0.042 2.559E-

31 

22.242 0.337 Maximum test sensitivity 
plus specificity 0.041 0.069 0.000 4.527E-

34 

1.513 0.021 
Balance training omission, 

predicted area and 
threshold value 

0.151 0.000 0.000 2.071E-
20 

8.618 0.148 
Equate entropy of 

thresholded and non-
thresholded distributions 

0.073 0.014 0.000 5.98E-
28 

 

  



Pictures of the model 
This is a representation of the Maxent model for Arctomecon_merriamii. Warmer colors show areas with better 
predicted conditions. White dots show the presence locations used for training, while violet dots show test locations. 
Click on the image for a full-size version. 
 

 

  



Response curves 
 
These curves show how each environmental variable affects the Maxent prediction. The (raw) Maxent model has the 
form exp(...)/constant, and the curves show how the exponent changes as each environmental variable is varied, 
keeping all other environmental variables at their average sample value. Click on a response curve to see a larger 
version. 
 



 

Analysis of variable contributions 
 
The following table gives a heuristic estimate of relative contributions of the environmental variables to the Maxent 
model. To determine the estimate, in each iteration of the training algorithm, the increase in regularized gain is 
added to the contribution of the corresponding variable, or subtracted from it if the change to the absolute value of 
lambda is negative. As with the jackknife, variable contributions should be interpreted with caution when the 
predictor variables are correlated. 

Variable Percent contribution 
rastert_bio_6 28.4 
rastert_bio_15 23.8 
rastert_bio_8 18.8 
rastert_bio_13 16.2 
rastert_bio_2 3.4 
rastert_bio_3 3 
rastert_bio_4 2.2 
rastert_bio_14 0.9 
rastert_bio_17 0.8 
rastert_bio_12 0.6 
rastert_bio_7 0.6 
rastert_bio_10 0.5 
rastert_bio_18 0.4 
rastert_bio_16 0.4 
rastert_bio_11 0.1 
rastert_bio_19 0 
rastert_bio_9 0 
rastert_bio_1 0 
rastert_bio_5 0 



The following picture shows the results of the jackknife test of variable importance. The environmental variable 
with highest gain when used in isolation is rastert_bio_6, which therefore appears to have the most useful 
information by itself. The environmental variable that decreases the gain the most when it is omitted is 
rastert_bio_15, which therefore appears to have the most information that isn't present in the other variables. 

 
 
The next picture shows the same jackknife test, using test gain instead of training gain. Note that conclusions about 
which variables are most important can change, now that we're looking at test data.  

 



Lastly, we have the same jackknife test, using AUC on test data.  

 

Raw data outputs and control parameters 
 
Regularized training gain is 2.598, training AUC is 0.989, unregularized training gain is 2.823. 
Unregularized test gain is 3.533. Test AUC is 0.993, standard deviation is 0.002 (calculated as in DeLong, DeLong 
& Clarke-Pearson 1988, equation 2). Algorithm terminated after 500 iterations (13 seconds). 
 
The follow parameters and settings were used during the run: 
216 presence records used for training, 24 for testing. 
10216 points used to determine the Maxent distribution (background points and presence points). 
Environmental layers used (all continuous): rastert_bio_1 rastert_bio_10 rastert_bio_11 rastert_bio_12 
rastert_bio_13 rastert_bio_14 rastert_bio_15 rastert_bio_16 rastert_bio_17 rastert_bio_18 rastert_bio_19 
rastert_bio_2 rastert_bio_3 rastert_bio_4 rastert_bio_5 rastert_bio_6 rastert_bio_7 rastert_bio_8 rastert_bio_9 
Command line: 
Feature types used: Linear Quadratic Product Threshold Hinge 
Regularization multiplier is 1.0 
Regularization values: linear/quadratic/product: 0.050 categorical: 0.250 threshold: 1.000 hinge: 0.500 
Species file is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all\gyp_plants_dd.csv 
Environmental variables from I:\rare_plant_data\habitat_modeling_maxent\worldclim\bio_30s_esri\bio_ascii_sw 
Output directory is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all 
Output format is Logistic 
Output file type is .asc 
Maximum iterations is 500 
Convergence threshold is 1.0E-5 
Random test percentage is 10 
Jackknife selected 
Remove duplicates selected 
Make pictures selected 
Create response curves selected  



Maxent model for Astragalus_geyeri_var._triquetrus 

Analysis of omission/commission 

The following picture shows the omission rate and predicted area as a function of the cumulative threshold. The 
omission rate is calculated both on the training presence records, and (if test data are used) on the test records. The 
omission rate should be close to the predicted omission, because of the definition of the cumulative threshold.  

 
 
The next picture is the receiver operating characteristic (ROC) curve for the same data. Note that the specificity is 
defined using predicted area, rather than true commission (see the paper by Phillips, Anderson and Schapire cited on 
the help page for discussion of what this means). This implies that the maximum achievable AUC is less than 1. If 
test data is drawn from the Maxent distribution itself, then the maximum possible test AUC would be 0.993 rather 
than 1; in practice the test AUC may exceed this bound.  

 



Some common thresholds and corresponding omission rates are as follows. If test data are available, binomial 
probabilities are calculated exactly if the number of test samples is at most 25, otherwise using a normal 
approximation to the binomial. These are 1-sided p-values for the null hypothesis that test points are predicted no 
better than by a random prediction with the same fractional predicted area. The "Balance" threshold minimizes 6 * 
training omission rate + .04 * cumulative threshold + 1.6 * fractional predicted area. 

Cumulative 
threshold 

Logistic 
threshold Description Fractional 

predicted area

Training 
omission 

rate 

Test 
omission 

rate 
P-value

1.000 0.007 Fixed cumulative value 0.045 0.000 0.000 6.942E-
21 

5.000 0.076 Fixed cumulative value 0.017 0.000 0.000 4.057E-
27 

10.000 0.188 Fixed cumulative value 0.012 0.000 0.000 2.231E-
29 

10.248 0.192 Minimum training 
presence 0.012 0.000 0.000 1.974E-

29 

31.179 0.506 10 percentile training 
presence 0.006 0.099 0.067 4.451E-

31 

17.661 0.301 Equal training sensitivity 
and specificity 0.009 0.007 0.000 1.238E-

31 

10.248 0.192 Maximum training 
sensitivity plus specificity 0.012 0.000 0.000 1.974E-

29 

28.423 0.463 Equal test sensitivity and 
specificity 0.006 0.070 0.000 6.025E-

34 

28.423 0.463 Maximum test sensitivity 
plus specificity 0.006 0.070 0.000 6.025E-

34 

0.893 0.006 
Balance training omission, 

predicted area and 
threshold value 

0.048 0.000 0.000 1.603E-
20 

6.931 0.125 
Equate entropy of 

thresholded and non-
thresholded distributions 

0.015 0.000 0.000 3.58E-
28 

 

  



Pictures of the model 
This is a representation of the Maxent model for Astragalus_geyeri_var._triquetrus. Warmer colors show areas with 
better predicted conditions. White dots show the presence locations used for training, while violet dots show test 
locations. Click on the image for a full-size version. 
 

 

  



Response curves 
These curves show how each environmental variable affects the Maxent prediction. The (raw) Maxent model has the 
form exp(...)/constant, and the curves show how the exponent changes as each environmental variable is varied, 
keeping all other environmental variables at their average sample value. Click on a response curve to see a larger 
version. 
 



 

Analysis of variable contributions 
 

The following table gives a heuristic estimate of relative contributions of the environmental variables to the Maxent 
model. To determine the estimate, in each iteration of the training algorithm, the increase in regularized gain is 
added to the contribution of the corresponding variable, or subtracted from it if the change to the absolute value of 
lambda is negative. As with the jackknife, variable contributions should be interpreted with caution when the 
predictor variables are correlated. 

Variable Percent contribution 
rastert_bio_4 36.7 
rastert_bio_5 22.7 
rastert_bio_3 17 
rastert_bio_15 7.3 
rastert_bio_10 6.9 
rastert_bio_2 2.9 
rastert_bio_12 2 
rastert_bio_7 1.4 
rastert_bio_8 1 
rastert_bio_6 0.8 
rastert_bio_18 0.5 
rastert_bio_14 0.3 
rastert_bio_1 0.3 
rastert_bio_16 0.2 
rastert_bio_17 0 
rastert_bio_19 0 
rastert_bio_11 0 
rastert_bio_13 0 
rastert_bio_9 0 



The following picture shows the results of the jackknife test of variable importance. The environmental variable 
with highest gain when used in isolation is rastert_bio_4, which therefore appears to have the most useful 
information by itself. The environmental variable that decreases the gain the most when it is omitted is 
rastert_bio_4, which therefore appears to have the most information that isn't present in the other variables. 
 

 
 
The next picture shows the same jackknife test, using test gain instead of training gain. Note that conclusions about 
which variables are most important can change, now that we're looking at test data.  

 



Lastly, we have the same jackknife test, using AUC on test data.  

 

Raw data outputs and control parameters 
 
Regularized training gain is 3.686, training AUC is 0.998, unregularized training gain is 3.768. 
Unregularized test gain is 4.839. Test AUC is 0.998, standard deviation is 0.001 (calculated as in DeLong, DeLong 
& Clarke-Pearson 1988, equation 2). Algorithm terminated after 500 iterations (12 seconds). 
 
The follow parameters and settings were used during the run: 
142 presence records used for training, 15 for testing. 
10142 points used to determine the Maxent distribution (background points and presence points). 
Environmental layers used (all continuous): rastert_bio_1 rastert_bio_10 rastert_bio_11 rastert_bio_12 
rastert_bio_13 rastert_bio_14 rastert_bio_15 rastert_bio_16 rastert_bio_17 rastert_bio_18 rastert_bio_19 
rastert_bio_2 rastert_bio_3 rastert_bio_4 rastert_bio_5 rastert_bio_6 rastert_bio_7 rastert_bio_8 rastert_bio_9 
Command line: 
Feature types used: Linear Quadratic Product Threshold Hinge 
Regularization multiplier is 1.0 
Regularization values: linear/quadratic/product: 0.050 categorical: 0.250 threshold: 1.000 hinge: 0.500 
Species file is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all\sand_plants_dd.csv 
Environmental variables from I:\rare_plant_data\habitat_modeling_maxent\worldclim\bio_30s_esri\bio_ascii_sw 
Output directory is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all 
Output format is Logistic 
Output file type is .asc 
Maximum iterations is 500 
Convergence threshold is 1.0E-5 
Random test percentage is 10 
Jackknife selected 
Remove duplicates selected 
Make pictures selected 
Create response curves selected 
  



Maxent model for Eriogonum_bifurcatum 

Analysis of omission/commission 

The following picture shows the omission rate and predicted area as a function of the cumulative threshold. The 
omission rate is calculated both on the training presence records, and (if test data are used) on the test records. The 
omission rate should be close to the predicted omission, because of the definition of the cumulative threshold.  

 
 
The next picture is the receiver operating characteristic (ROC) curve for the same data. Note that the specificity is 
defined using predicted area, rather than true commission (see the paper by Phillips, Anderson and Schapire cited on 
the help page for discussion of what this means). This implies that the maximum achievable AUC is less than 1. If 
test data is drawn from the Maxent distribution itself, then the maximum possible test AUC would be 0.987 rather 
than 1; in practice the test AUC may exceed this bound.  

 



Some common thresholds and corresponding omission rates are as follows. If test data are available, binomial 
probabilities are calculated exactly if the number of test samples is at most 25, otherwise using a normal 
approximation to the binomial. These are 1-sided p-values for the null hypothesis that test points are predicted no 
better than by a random prediction with the same fractional predicted area. The "Balance" threshold minimizes 6 * 
training omission rate + .04 * cumulative threshold + 1.6 * fractional predicted area. 

Cumulative 
threshold 

Logistic 
threshold Description Fractional 

predicted area

Training 
omission 

rate 

Test 
omission 

rate 
P-value

1.000 0.003 Fixed cumulative value 0.108 0.000 0.000 2.016E-
9 

5.000 0.017 Fixed cumulative value 0.041 0.000 0.000 3.496E-
13 

10.000 0.048 Fixed cumulative value 0.022 0.000 0.000 1.207E-
15 

29.890 0.266 Minimum training 
presence 0.004 0.000 0.000 2.621E-

22 

80.304 0.844 10 percentile training 
presence 0.000 0.093 0.111 5.896E-

27 

29.890 0.266 Equal training sensitivity 
and specificity 0.004 0.000 0.000 2.621E-

22 

29.890 0.266 Maximum training 
sensitivity plus specificity 0.004 0.000 0.000 2.621E-

22 

42.441 0.556 Equal test sensitivity and 
specificity 0.002 0.035 0.000 1.984E-

25 

42.441 0.556 Maximum test sensitivity 
plus specificity 0.002 0.035 0.000 1.984E-

25 

1.728 0.005 
Balance training omission, 

predicted area and 
threshold value 

0.084 0.000 0.000 2.173E-
10 

16.409 0.103 
Equate entropy of 

thresholded and non-
thresholded distributions 

0.012 0.000 0.000 4.785E-
18 

 
 

  



Pictures of the model 
This is a representation of the Maxent model for Eriogonum_bifurcatum. Warmer colors show areas with better 
predicted conditions. White dots show the presence locations used for training, while violet dots show test locations. 
Click on the image for a full-size version. 
 

 

  



Response curves 
 
These curves show how each environmental variable affects the Maxent prediction. The (raw) Maxent model has the 
form exp(...)/constant, and the curves show how the exponent changes as each environmental variable is varied, 
keeping all other environmental variables at their average sample value. Click on a response curve to see a larger 
version. 
 



 

Analysis of variable contributions 
 
The following table gives a heuristic estimate of relative contributions of the environmental variables to the Maxent 
model. To determine the estimate, in each iteration of the training algorithm, the increase in regularized gain is 
added to the contribution of the corresponding variable, or subtracted from it if the change to the absolute value of 
lambda is negative. As with the jackknife, variable contributions should be interpreted with caution when the 
predictor variables are correlated. 

Variable Percent contribution 
rastert_bio_12 19.7 
rastert_bio_4 19.2 
rastert_bio_5 14.7 
rastert_bio_9 13.3 
rastert_bio_8 10.3 
rastert_bio_16 8.9 
rastert_bio_19 8.5 
rastert_bio_2 2.8 
rastert_bio_17 0.7 
rastert_bio_15 0.6 
rastert_bio_14 0.5 
rastert_bio_6 0.3 
rastert_bio_3 0.2 
rastert_bio_18 0.1 
rastert_bio_10 0.1 
rastert_bio_13 0 
rastert_bio_1 0 
rastert_bio_11 0 
rastert_bio_7 0 



The following picture shows the results of the jackknife test of variable importance. The environmental variable 
with highest gain when used in isolation is rastert_bio_5, which therefore appears to have the most useful 
information by itself. The environmental variable that decreases the gain the most when it is omitted is 
rastert_bio_2, which therefore appears to have the most information that isn't present in the other variables. 
 

 
 
The next picture shows the same jackknife test, using test gain instead of training gain. Note that conclusions about 
which variables are most important can change, now that we're looking at test data.  

 



Lastly, we have the same jackknife test, using AUC on test data.  

 

Raw data outputs and control parameters 
 
Regularized training gain is 4.316, training AUC is 1.000, unregularized training gain is 4.510. 
Unregularized test gain is 6.206. Test AUC is 1.000, standard deviation is 0.000 (calculated as in DeLong, DeLong 
& Clarke-Pearson 1988, equation 2). Algorithm terminated after 500 iterations (12 seconds). 
 
The follow parameters and settings were used during the run: 
86 presence records used for training, 9 for testing. 
10086 points used to determine the Maxent distribution (background points and presence points). 
Environmental layers used (all continuous): rastert_bio_1 rastert_bio_10 rastert_bio_11 rastert_bio_12 
rastert_bio_13 rastert_bio_14 rastert_bio_15 rastert_bio_16 rastert_bio_17 rastert_bio_18 rastert_bio_19 
rastert_bio_2 rastert_bio_3 rastert_bio_4 rastert_bio_5 rastert_bio_6 rastert_bio_7 rastert_bio_8 rastert_bio_9 
Command line: 
Feature types used: Linear Quadratic Product Threshold Hinge 
Regularization multiplier is 1.0 
Regularization values: linear/quadratic/product: 0.150 categorical: 0.250 threshold: 1.140 hinge: 0.500 
Species file is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all\sand_plants_dd.csv 
Environmental variables from I:\rare_plant_data\habitat_modeling_maxent\worldclim\bio_30s_esri\bio_ascii_sw 
Output directory is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all 
Output format is Logistic 
Output file type is .asc 
Maximum iterations is 500 
Convergence threshold is 1.0E-5 
Random test percentage is 10 
Jackknife selected 
Remove duplicates selected 
Make pictures selected 
Create response curves selected 
  



Maxent model for Eriogonum_corymbosum_var._nilesii 

Analysis of omission/commission 

The following picture shows the omission rate and predicted area as a function of the cumulative threshold. The 
omission rate is is calculated both on the training presence records, and (if test data are used) on the test records. The 
omission rate should be close to the predicted omission, because of the definition of the cumulative threshold.  

 
 
The next picture is the receiver operating characteristic (ROC) curve for the same data. Note that the specificity is 
defined using predicted area, rather than true commission (see the paper by Phillips, Anderson and Schapire cited on 
the help page for discussion of what this means). This implies that the maximum achievable AUC is less than 1. If 
test data is drawn from the Maxent distribution itself, then the maximum possible test AUC would be 0.986 rather 
than 1; in practice the test AUC may exceed this bound.  

 



Some common thresholds and corresponding omission rates are as follows. If test data are available, binomial 
probabilities are calculated exactly if the number of test samples is at most 25, otherwise using a normal 
approximation to the binomial. These are 1-sided p-values for the null hypothesis that test points are predicted no 
better than by a random prediction with the same fractional predicted area. The "Balance" threshold minimizes 6 * 
training omission rate + .04 * cumulative threshold + 1.6 * fractional predicted area. 

Cumulative 
threshold 

Logistic 
threshold Description Fractional 

predicted area

Training 
omission 

rate 

Test 
omission 

rate 
P-value

1.000 0.007 Fixed cumulative value 0.107 0.000 0.000 2.193E-
11 

5.000 0.039 Fixed cumulative value 0.051 0.000 0.000 6.071E-
15 

10.000 0.083 Fixed cumulative value 0.031 0.000 0.091 8.762E-
15 

18.464 0.188 Minimum training 
presence 0.016 0.000 0.091 1.349E-

17 

49.182 0.619 10 percentile training 
presence 0.004 0.095 0.273 1.907E-

17 

21.445 0.229 Equal training sensitivity 
and specificity 0.013 0.010 0.091 2.028E-

18 

18.464 0.188 Maximum training 
sensitivity plus specificity 0.016 0.000 0.091 1.349E-

17 

5.594 0.045 Equal test sensitivity and 
specificity 0.048 0.000 0.091 6.417E-

13 

5.592 0.045 Maximum test sensitivity 
plus specificity 0.048 0.000 0.000 2.909E-

15 

1.444 0.010 
Balance training omission, 

predicted area and 
threshold value 

0.094 0.000 0.000 5.123E-
12 

12.793 0.111 
Equate entropy of 

thresholded and non-
thresholded distributions 

0.025 0.000 0.091 8.728E-
16 

 
 

  



Pictures of the model 
This is a representation of the Maxent model for Eriogonum_corymbosum_var._nilesii. Warmer colors show areas 
with better predicted conditions. White dots show the presence locations used for training, while violet dots show 
test locations. Click on the image for a full-size version. 
 

 

  



Response curves 
 
These curves show how each environmental variable affects the Maxent prediction. The (raw) Maxent model has the 
form exp(...)/constant, and the curves show how the exponent changes as each environmental variable is varied, 
keeping all other environmental variables at their average sample value. Click on a response curve to see a larger 
version. 
 



 

Analysis of variable contributions 
 
The following table gives a heuristic estimate of relative contributions of the environmental variables to the Maxent 
model. To determine the estimate, in each iteration of the training algorithm, the increase in regularized gain is 
added to the contribution of the corresponding variable, or subtracted from it if the change to the absolute value of 
lambda is negative. As with the jackknife, variable contributions should be interpreted with caution when the 
predictor variables are correlated. 

Variable Percent contribution 
rastert_bio_4 23.3 
rastert_bio_3 18.3 
rastert_bio_5 17.5 
rastert_bio_6 16.1 
rastert_bio_15 9.6 
rastert_bio_13 4.9 
rastert_bio_19 3.6 
rastert_bio_7 2.7 
rastert_bio_1 1.2 
rastert_bio_8 0.6 
rastert_bio_18 0.6 
rastert_bio_11 0.5 
rastert_bio_16 0.4 
rastert_bio_2 0.4 
rastert_bio_14 0.3 
rastert_bio_17 0.1 
rastert_bio_10 0.1 
rastert_bio_12 0 
rastert_bio_9 0 



The following picture shows the results of the jackknife test of variable importance. The environmental variable 
with highest gain when used in isolation is rastert_bio_5, which therefore appears to have the most useful 
information by itself. The environmental variable that decreases the gain the most when it is omitted is 
rastert_bio_6, which therefore appears to have the most information that isn't present in the other variables. 
 

 
 
The next picture shows the same jackknife test, using test gain instead of training gain. Note that conclusions about 
which variables are most important can change, now that we're looking at test data.  

 



Lastly, we have the same jackknife test, using AUC on test data.  

 

Raw data outputs and control parameters 
Regularized training gain is 3.713, training AUC is 0.999, unregularized training gain is 4.005. 
Unregularized test gain is 4.433. Test AUC is 0.994, standard deviation is 0.004 (calculated as in DeLong, DeLong 
& Clarke-Pearson 1988, equation 2). Algorithm terminated after 500 iterations (12 seconds). 
 
The follow parameters and settings were used during the run: 
105 presence records used for training, 11 for testing. 
10105 points used to determine the Maxent distribution (background points and presence points). 
Environmental layers used (all continuous): rastert_bio_1 rastert_bio_10 rastert_bio_11 rastert_bio_12 
rastert_bio_13 rastert_bio_14 rastert_bio_15 rastert_bio_16 rastert_bio_17 rastert_bio_18 rastert_bio_19 
rastert_bio_2 rastert_bio_3 rastert_bio_4 rastert_bio_5 rastert_bio_6 rastert_bio_7 rastert_bio_8 rastert_bio_9 
Command line: 
Feature types used: Linear Quadratic Product Threshold Hinge 
Regularization multiplier is 1.0 
Regularization values: linear/quadratic/product: 0.050 categorical: 0.250 threshold: 1.000 hinge: 0.500 
Species file is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all\gyp_plants_dd.csv 
Environmental variables from I:\rare_plant_data\habitat_modeling_maxent\worldclim\bio_30s_esri\bio_ascii_sw 
Output directory is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all 
Output format is Logistic 
Output file type is .asc 
Maximum iterations is 500 
Convergence threshold is 1.0E-5 
Random test percentage is 10 
Jackknife selected 
Remove duplicates selected 
Make pictures selected 
Create response curves selected 
  



Maxent model for Eriogonum_viscidulum 

Analysis of omission/commission 

The following picture shows the omission rate and predicted area as a function of the cumulative threshold. The 
omission rate is is calculated both on the training presence records, and (if test data are used) on the test records. The 
omission rate should be close to the predicted omission, because of the definition of the cumulative threshold.  

 
 
The next picture is the receiver operating characteristic (ROC) curve for the same data. Note that the specificity is 
defined using predicted area, rather than true commission (see the paper by Phillips, Anderson and Schapire cited on 
the help page for discussion of what this means). This implies that the maximum achievable AUC is less than 1. If 
test data is drawn from the Maxent distribution itself, then the maximum possible test AUC would be 0.995 rather 
than 1; in practice the test AUC may exceed this bound.  

 



Some common thresholds and corresponding omission rates are as follows. If test data are available, binomial 
probabilities are calculated exactly if the number of test samples is at most 25, otherwise using a normal 
approximation to the binomial. These are 1-sided p-values for the null hypothesis that test points are predicted no 
better than by a random prediction with the same fractional predicted area. The "Balance" threshold minimizes 6 * 
training omission rate + .04 * cumulative threshold + 1.6 * fractional predicted area. 

Cumulative 
threshold 

Logistic 
threshold Description Fractional 

predicted area

Training 
omission 

rate 

Test 
omission 

rate 
P-value

1.000 0.009 Fixed cumulative value 0.031 0.000 0.000 2.943E-
11 

5.000 0.051 Fixed cumulative value 0.014 0.000 0.143 4.989E-
11 

10.000 0.146 Fixed cumulative value 0.009 0.000 0.143 2.811E-
12 

10.785 0.153 Minimum training 
presence 0.008 0.000 0.143 1.963E-

12 

30.808 0.459 10 percentile training 
presence 0.004 0.087 0.429 7.232E-

9 

10.950 0.155 Equal training sensitivity 
and specificity 0.008 0.014 0.143 1.963E-

12 

10.785 0.153 Maximum training 
sensitivity plus specificity 0.008 0.000 0.143 1.963E-

12 

4.649 0.046 Equal test sensitivity and 
specificity 0.014 0.000 0.000 1.348E-

13 

4.649 0.046 Maximum test sensitivity 
plus specificity 0.014 0.000 0.000 1.348E-

13 

0.539 0.004 
Balance training omission, 

predicted area and 
threshold value 

0.038 0.000 0.000 1.254E-
10 

8.002 0.109 
Equate entropy of 

thresholded and non-
thresholded distributions 

0.010 0.000 0.143 6.94E-
12 

 
 

  



Pictures of the model 
This is a representation of the Maxent model for Eriogonum_viscidulum. Warmer colors show areas with better 
predicted conditions. White dots show the presence locations used for training, while violet dots show test locations. 
Click on the image for a full-size version. 
 

 

  



Response curves 
 
These curves show how each environmental variable affects the Maxent prediction. The (raw) Maxent model has the 
form exp(...)/constant, and the curves show how the exponent changes as each environmental variable is varied, 
keeping all other environmental variables at their average sample value. Click on a response curve to see a larger 
version. 
 



 

Analysis of variable contributions 
 
The following table gives a heuristic estimate of relative contributions of the environmental variables to the Maxent 
model. To determine the estimate, in each iteration of the training algorithm, the increase in regularized gain is 
added to the contribution of the corresponding variable, or subtracted from it if the change to the absolute value of 
lambda is negative. As with the jackknife, variable contributions should be interpreted with caution when the 
predictor variables are correlated. 

Variable Percent contribution 
rastert_bio_4 38.3 
rastert_bio_3 22.9 
rastert_bio_10 17.5 
rastert_bio_6 9.1 
rastert_bio_12 8.4 
rastert_bio_1 1.7 
rastert_bio_2 0.6 
rastert_bio_19 0.5 
rastert_bio_8 0.4 
rastert_bio_17 0.2 
rastert_bio_7 0.2 
rastert_bio_14 0.1 
rastert_bio_15 0.1 
rastert_bio_5 0 
rastert_bio_9 0 
rastert_bio_18 0 
rastert_bio_13 0 
rastert_bio_11 0 
rastert_bio_16 0 



The following picture shows the results of the jackknife test of variable importance. The environmental variable 
with highest gain when used in isolation is rastert_bio_4, which therefore appears to have the most useful 
information by itself. The environmental variable that decreases the gain the most when it is omitted is 
rastert_bio_4, which therefore appears to have the most information that isn't present in the other variables. 
 

 
 
The next picture shows the same jackknife test, using test gain instead of training gain. Note that conclusions about 
which variables are most important can change, now that we're looking at test data.  

 



Lastly, we have the same jackknife test, using AUC on test data.  

 

Raw data outputs and control parameters 
 
Regularized training gain is 4.220, training AUC is 0.998, unregularized training gain is 4.320. 
Unregularized test gain is 4.473. Test AUC is 0.996, standard deviation is 0.002 (calculated as in DeLong, DeLong 
& Clarke-Pearson 1988, equation 2). Algorithm terminated after 500 iterations (13 seconds). 
 
The follow parameters and settings were used during the run: 
69 presence records used for training, 7 for testing. 
10069 points used to determine the Maxent distribution (background points and presence points). 
Environmental layers used (all continuous): rastert_bio_1 rastert_bio_10 rastert_bio_11 rastert_bio_12 
rastert_bio_13 rastert_bio_14 rastert_bio_15 rastert_bio_16 rastert_bio_17 rastert_bio_18 rastert_bio_19 
rastert_bio_2 rastert_bio_3 rastert_bio_4 rastert_bio_5 rastert_bio_6 rastert_bio_7 rastert_bio_8 rastert_bio_9 
Command line: 
Feature types used: Linear Quadratic Hinge 
Regularization multiplier is 1.0 
Regularization values: linear/quadratic/product: 0.139 categorical: 0.250 hinge: 0.500 
Species file is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all\sand_plants_dd.csv 
Environmental variables from I:\rare_plant_data\habitat_modeling_maxent\worldclim\bio_30s_esri\bio_ascii_sw 
Output directory is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all 
Output format is Logistic 
Output file type is .asc 
Maximum iterations is 500 
Convergence threshold is 1.0E-5 
Random test percentage is 10 
Jackknife selected 
Remove duplicates selected 
Make pictures selected 
Create response curves selected 
  



Maxent model for Pediomelum_castoreum 

Analysis of omission/commission 

The following picture shows the omission rate and predicted area as a function of the cumulative threshold. The 
omission rate is is calculated both on the training presence records, and (if test data are used) on the test records. The 
omission rate should be close to the predicted omission, because of the definition of the cumulative threshold.  

 
 
The next picture is the receiver operating characteristic (ROC) curve for the same data. Note that the specificity is 
defined using predicted area, rather than true commission (see the paper by Phillips, Anderson and Schapire cited on 
the help page for discussion of what this means). This implies that the maximum achievable AUC is less than 1. If 
test data is drawn from the Maxent distribution itself, then the maximum possible test AUC would be 0.994 rather 
than 1; in practice the test AUC may exceed this bound.  

 



Some common thresholds and corresponding omission rates are as follows. If test data are available, binomial 
probabilities are calculated exactly if the number of test samples is at most 25, otherwise using a normal 
approximation to the binomial. These are 1-sided p-values for the null hypothesis that test points are predicted no 
better than by a random prediction with the same fractional predicted area. The "Balance" threshold minimizes 6 * 
training omission rate + .04 * cumulative threshold + 1.6 * fractional predicted area. 

Cumulative 
threshold 

Logistic 
threshold Description Fractional 

predicted area

Training 
omission 

rate 

Test 
omission 

rate 
P-value

1.000 0.009 Fixed cumulative value 0.035 0.000 0.000 5.481E-
8 

5.000 0.073 Fixed cumulative value 0.017 0.000 0.000 1.379E-
9 

10.000 0.150 Fixed cumulative value 0.012 0.042 0.000 2.386E-
10 

7.411 0.125 Minimum training 
presence 0.014 0.000 0.000 5.378E-

10 

33.294 0.456 10 percentile training 
presence 0.004 0.083 0.000 1.845E-

12 

7.420 0.126 Equal training sensitivity 
and specificity 0.014 0.021 0.000 5.378E-

10 

7.411 0.125 Maximum training 
sensitivity plus specificity 0.014 0.000 0.000 5.378E-

10 

38.492 0.502 Equal test sensitivity and 
specificity 0.004 0.167 0.000 7.924E-

13 

38.492 0.502 Maximum test sensitivity 
plus specificity 0.004 0.167 0.000 7.924E-

13 

0.642 0.005 
Balance training omission, 

predicted area and 
threshold value 

0.042 0.000 0.000 1.323E-
7 

8.955 0.138 
Equate entropy of 

thresholded and non-
thresholded distributions 

0.013 0.021 0.000 3.304E-
10 

 
 

  



Pictures of the model 
This is a representation of the Maxent model for Pediomelum_castoreum. Warmer colors show areas with better 
predicted conditions. White dots show the presence locations used for training, while violet dots show test locations. 
Click on the image for a full-size version. 
 

 

  



Response curves 
 
These curves show how each environmental variable affects the Maxent prediction. The (raw) Maxent model has the 
form exp(...)/constant, and the curves show how the exponent changes as each environmental variable is varied, 
keeping all other environmental variables at their average sample value. Click on a response curve to see a larger 
version. 
 



 

Analysis of variable contributions 
 
The following table gives a heuristic estimate of relative contributions of the environmental variables to the Maxent 
model. To determine the estimate, in each iteration of the training algorithm, the increase in regularized gain is 
added to the contribution of the corresponding variable, or subtracted from it if the change to the absolute value of 
lambda is negative. As with the jackknife, variable contributions should be interpreted with caution when the 
predictor variables are correlated. 

Variable Percent contribution 
rastert_bio_4 37.2 
rastert_bio_6 23.8 
rastert_bio_3 14.5 
rastert_bio_17 8.5 
rastert_bio_10 8.4 
rastert_bio_12 2.2 
rastert_bio_8 1.7 
rastert_bio_5 1.3 
rastert_bio_1 0.9 
rastert_bio_18 0.6 
rastert_bio_19 0.5 
rastert_bio_15 0.2 
rastert_bio_14 0.1 
rastert_bio_11 0 
rastert_bio_16 0 
rastert_bio_13 0 
rastert_bio_2 0 
rastert_bio_7 0 
rastert_bio_9 0 



The following picture shows the results of the jackknife test of variable importance. The environmental variable 
with highest gain when used in isolation is rastert_bio_4, which therefore appears to have the most useful 
information by itself. The environmental variable that decreases the gain the most when it is omitted is 
rastert_bio_6, which therefore appears to have the most information that isn't present in the other variables. 
 

 
 
The next picture shows the same jackknife test, using test gain instead of training gain. Note that conclusions about 
which variables are most important can change, now that we're looking at test data.  

 



Lastly, we have the same jackknife test, using AUC on test data.  

 

Raw data outputs and control parameters 
 
Regularized training gain is 4.185, training AUC is 0.997, unregularized training gain is 4.294. 
Unregularized test gain is 4.756. Test AUC is 0.997, standard deviation is 0.001 (calculated as in DeLong, DeLong 
& Clarke-Pearson 1988, equation 2). Algorithm terminated after 500 iterations (11 seconds). 
 
The follow parameters and settings were used during the run: 
48 presence records used for training, 5 for testing. 
10048 points used to determine the Maxent distribution (background points and presence points). 
Environmental layers used (all continuous): rastert_bio_1 rastert_bio_10 rastert_bio_11 rastert_bio_12 
rastert_bio_13 rastert_bio_14 rastert_bio_15 rastert_bio_16 rastert_bio_17 rastert_bio_18 rastert_bio_19 
rastert_bio_2 rastert_bio_3 rastert_bio_4 rastert_bio_5 rastert_bio_6 rastert_bio_7 rastert_bio_8 rastert_bio_9 
Command line: 
Feature types used: Linear Quadratic Hinge 
Regularization multiplier is 1.0 
Regularization values: linear/quadratic/product: 0.199 categorical: 0.250 hinge: 0.500 
Species file is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all\sand_plants_dd.csv 
Environmental variables from I:\rare_plant_data\habitat_modeling_maxent\worldclim\bio_30s_esri\bio_ascii_sw 
Output directory is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all 
Output format is Logistic 
Output file type is .asc 
Maximum iterations is 500 
Convergence threshold is 1.0E-5 
Random test percentage is 10 
Jackknife selected 
Remove duplicates selected 
Make pictures selected 
Create response curves selected 
  



Maxent model for Penstemon_albomarginatus 

 
Analysis of omission/commission 

The following picture shows the omission rate and predicted area as a function of the cumulative threshold. The 
omission rate is is calculated both on the training presence records, and (if test data are used) on the test records. The 
omission rate should be close to the predicted omission, because of the definition of the cumulative threshold.  

 
The next picture is the receiver operating characteristic (ROC) curve for the same data. Note that the specificity is 
defined using predicted area, rather than true commission (see the paper by Phillips, Anderson and Schapire cited on 
the help page for discussion of what this means). This implies that the maximum achievable AUC is less than 1. If 
test data is drawn from the Maxent distribution itself, then the maximum possible test AUC would be 0.977 rather 
than 1; in practice the test AUC may exceed this bound.  

 



Some common thresholds and corresponding omission rates are as follows. If test data are available, binomial 
probabilities are calculated exactly if the number of test samples is at most 25, otherwise using a normal 
approximation to the binomial. These are 1-sided p-values for the null hypothesis that test points are predicted no 
better than by a random prediction with the same fractional predicted area. The "Balance" threshold minimizes 6 * 
training omission rate + .04 * cumulative threshold + 1.6 * fractional predicted area. 

Cumulative 
threshold 

Logistic 
threshold Description Fractional 

predicted area

Training 
omission 

rate 

Test 
omission 

rate 
P-value

1.000 0.007 Fixed cumulative value 0.185 0.000 0.000 8.739E-
9 

5.000 0.041 Fixed cumulative value 0.093 0.010 0.000 4.344E-
12 

10.000 0.090 Fixed cumulative value 0.058 0.020 0.000 2.406E-
14 

3.750 0.030 Minimum training 
presence 0.108 0.000 0.000 2.404E-

11 

47.463 0.573 10 percentile training 
presence 0.008 0.098 0.091 1.327E-

20 

22.175 0.237 Equal training sensitivity 
and specificity 0.026 0.029 0.000 3.518E-

18 

22.113 0.236 Maximum training 
sensitivity plus specificity 0.026 0.020 0.000 3.518E-

18 

26.216 0.300 Equal test sensitivity and 
specificity 0.021 0.029 0.000 3.153E-

19 

26.216 0.300 Maximum test sensitivity 
plus specificity 0.021 0.029 0.000 3.153E-

19 

2.246 0.018 
Balance training omission, 

predicted area and 
threshold value 

0.137 0.000 0.000 3.165E-
10 

13.245 0.125 
Equate entropy of 

thresholded and non-
thresholded distributions 

0.045 0.020 0.000 1.73E-
15 

 
 

  



Pictures of the model 
This is a representation of the Maxent model for Penstemon_albomarginatus. Warmer colors show areas with better 
predicted conditions. White dots show the presence locations used for training, while violet dots show test locations. 
Click on the image for a full-size version. 
 

 

  



Response curves 
 
These curves show how each environmental variable affects the Maxent prediction. The (raw) Maxent model has the 
form exp(...)/constant, and the curves show how the exponent changes as each environmental variable is varied, 
keeping all other environmental variables at their average sample value. Click on a response curve to see a larger 
version. 
 



 

Analysis of variable contributions 
 
The following table gives a heuristic estimate of relative contributions of the environmental variables to the Maxent 
model. To determine the estimate, in each iteration of the training algorithm, the increase in regularized gain is 
added to the contribution of the corresponding variable, or subtracted from it if the change to the absolute value of 
lambda is negative. As with the jackknife, variable contributions should be interpreted with caution when the 
predictor variables are correlated. 

Variable Percent contribution 
rastert_bio_10 28.6 
rastert_bio_6 12.4 
rastert_bio_2 8 
rastert_bio_9 7.7 
rastert_bio_8 7 
rastert_bio_17 6.9 
rastert_bio_4 5.6 
rastert_bio_16 5.4 
rastert_bio_7 4.2 
rastert_bio_15 3.9 
rastert_bio_18 3.6 
rastert_bio_3 3 
rastert_bio_5 2.6 
rastert_bio_14 0.6 
rastert_bio_12 0.2 
rastert_bio_19 0.1 
rastert_bio_11 0.1 
rastert_bio_13 0 
rastert_bio_1 0 



The following picture shows the results of the jackknife test of variable importance. The environmental variable 
with highest gain when used in isolation is rastert_bio_10, which therefore appears to have the most useful 
information by itself. The environmental variable that decreases the gain the most when it is omitted is 
rastert_bio_18, which therefore appears to have the most information that isn't present in the other variables. 
 

 
 
The next picture shows the same jackknife test, using test gain instead of training gain. Note that conclusions about 
which variables are most important can change, now that we're looking at test data.  

 



Lastly, we have the same jackknife test, using AUC on test data.  

 

Raw data outputs and control parameters 
 
Regularized training gain is 3.363, training AUC is 0.996, unregularized training gain is 3.726. 
Unregularized test gain is 4.513. Test AUC is 0.997, standard deviation is 0.002 (calculated as in DeLong, DeLong 
& Clarke-Pearson 1988, equation 2). Algorithm terminated after 500 iterations (13 seconds). 
 
The follow parameters and settings were used during the run: 
102 presence records used for training, 11 for testing. 
10102 points used to determine the Maxent distribution (background points and presence points). 
Environmental layers used (all continuous): rastert_bio_1 rastert_bio_10 rastert_bio_11 rastert_bio_12 
rastert_bio_13 rastert_bio_14 rastert_bio_15 rastert_bio_16 rastert_bio_17 rastert_bio_18 rastert_bio_19 
rastert_bio_2 rastert_bio_3 rastert_bio_4 rastert_bio_5 rastert_bio_6 rastert_bio_7 rastert_bio_8 rastert_bio_9 
Command line: 
Feature types used: Linear Quadratic Product Threshold Hinge 
Regularization multiplier is 1.0 
Regularization values: linear/quadratic/product: 0.050 categorical: 0.250 threshold: 1.000 hinge: 0.500 
Species file is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all\sand_plants_dd.csv 
Environmental variables from I:\rare_plant_data\habitat_modeling_maxent\worldclim\bio_30s_esri\bio_ascii_sw 
Output directory is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all 
Output format is Logistic 
Output file type is .asc 
Maximum iterations is 500 
Convergence threshold is 1.0E-5 
Random test percentage is 10 
Jackknife selected 
Remove duplicates selected 
Make pictures selected 
Create response curves selected 
  



Maxent model for Penstemon_bicolor 

 
Analysis of omission/commission 

The following picture shows the omission rate and predicted area as a function of the cumulative threshold. The 
omission rate is is calculated both on the training presence records, and (if test data are used) on the test records. The 
omission rate should be close to the predicted omission, because of the definition of the cumulative threshold.  

 
The next picture is the receiver operating characteristic (ROC) curve for the same data. Note that the specificity is 
defined using predicted area, rather than true commission (see the paper by Phillips, Anderson and Schapire cited on 
the help page for discussion of what this means). This implies that the maximum achievable AUC is less than 1. If 
test data is drawn from the Maxent distribution itself, then the maximum possible test AUC would be 0.982 rather 
than 1; in practice the test AUC may exceed this bound.  

 



Some common thresholds and corresponding omission rates are as follows. If test data are available, binomial 
probabilities are calculated exactly if the number of test samples is at most 25, otherwise using a normal 
approximation to the binomial. These are 1-sided p-values for the null hypothesis that test points are predicted no 
better than by a random prediction with the same fractional predicted area. The "Balance" threshold minimizes 6 * 
training omission rate + .04 * cumulative threshold + 1.6 * fractional predicted area. 

Cumulative 
threshold 

Logistic 
threshold Description Fractional 

predicted area

Training 
omission 

rate 

Test 
omission 

rate 
P-value

1.000 0.013 Fixed cumulative value 0.109 0.000 0.045 1.159E-
19 

5.000 0.075 Fixed cumulative value 0.060 0.005 0.045 4.878E-
25 

10.000 0.147 Fixed cumulative value 0.042 0.015 0.091 5.133E-
26 

3.237 0.047 Minimum training 
presence 0.073 0.000 0.045 2.39E-

23 

40.809 0.522 10 percentile training 
presence 0.012 0.100 0.091 1.666E-

36 

14.939 0.220 Equal training sensitivity 
and specificity 0.032 0.030 0.091 2.586E-

28 

11.216 0.170 Maximum training 
sensitivity plus specificity 0.039 0.015 0.091 1.217E-

26 

7.538 0.109 Equal test sensitivity and 
specificity 0.049 0.010 0.045 6.268E-

27 

7.538 0.109 Maximum test sensitivity 
plus specificity 0.049 0.010 0.045 6.268E-

27 

1.276 0.017 
Balance training omission, 

predicted area and 
threshold value 

0.101 0.000 0.045 2.35E-
20 

9.117 0.133 
Equate entropy of 

thresholded and non-
thresholded distributions 

0.044 0.015 0.091 1.569E-
25 

 
 

  



Pictures of the model 
This is a representation of the Maxent model for Penstemon_bicolor. Warmer colors show areas with better 
predicted conditions. White dots show the presence locations used for training, while violet dots show test locations. 
Click on the image for a full-size version. 
 

 

  



Response curves 
 
These curves show how each environmental variable affects the Maxent prediction. The (raw) Maxent model has the 
form exp(...)/constant, and the curves show how the exponent changes as each environmental variable is varied, 
keeping all other environmental variables at their average sample value. Click on a response curve to see a larger 
version. 
 



 

Analysis of variable contributions 
 
The following table gives a heuristic estimate of relative contributions of the environmental variables to the Maxent 
model. To determine the estimate, in each iteration of the training algorithm, the increase in regularized gain is 
added to the contribution of the corresponding variable, or subtracted from it if the change to the absolute value of 
lambda is negative. As with the jackknife, variable contributions should be interpreted with caution when the 
predictor variables are correlated. 

Variable Percent contribution 
rastert_bio_15 24 
rastert_bio_6 22.7 
rastert_bio_3 15.8 
rastert_bio_8 9.6 
rastert_bio_10 7.8 
rastert_bio_2 5.6 
rastert_bio_7 3.8 
rastert_bio_4 3.1 
rastert_bio_12 2.3 
rastert_bio_19 1.6 
rastert_bio_5 1.5 
rastert_bio_17 0.8 
rastert_bio_13 0.6 
rastert_bio_16 0.3 
rastert_bio_11 0.2 
rastert_bio_14 0.1 
rastert_bio_18 0.1 
rastert_bio_9 0 
rastert_bio_1 0 



The following picture shows the results of the jackknife test of variable importance. The environmental variable 
with highest gain when used in isolation is rastert_bio_14, which therefore appears to have the most useful 
information by itself. The environmental variable that decreases the gain the most when it is omitted is 
rastert_bio_15, which therefore appears to have the most information that isn't present in the other variables. 
 

 
 
The next picture shows the same jackknife test, using test gain instead of training gain. Note that conclusions about 
which variables are most important can change, now that we're looking at test data.  

 



Lastly, we have the same jackknife test, using AUC on test data.  

 

Raw data outputs and control parameters 
 
Regularized training gain is 2.944, training AUC is 0.994, unregularized training gain is 3.138. 
Unregularized test gain is 3.561. Test AUC is 0.988, standard deviation is 0.005 (calculated as in DeLong, DeLong 
& Clarke-Pearson 1988, equation 2). Algorithm terminated after 500 iterations (13 seconds). 
 
The follow parameters and settings were used during the run: 
201 presence records used for training, 22 for testing. 
10201 points used to determine the Maxent distribution (background points and presence points). 
Environmental layers used (all continuous): rastert_bio_1 rastert_bio_10 rastert_bio_11 rastert_bio_12 
rastert_bio_13 rastert_bio_14 rastert_bio_15 rastert_bio_16 rastert_bio_17 rastert_bio_18 rastert_bio_19 
rastert_bio_2 rastert_bio_3 rastert_bio_4 rastert_bio_5 rastert_bio_6 rastert_bio_7 rastert_bio_8 rastert_bio_9 
Command line: 
Feature types used: Linear Quadratic Product Threshold Hinge 
Regularization multiplier is 1.0 
Regularization values: linear/quadratic/product: 0.050 categorical: 0.250 threshold: 1.000 hinge: 0.500 
Species file is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all\sand_plants_dd.csv 
Environmental variables from I:\rare_plant_data\habitat_modeling_maxent\worldclim\bio_30s_esri\bio_ascii_sw 
Output directory is I:\rare_plant_data\habitat_modeling_maxent\worldclim\models_all 
Output format is Logistic 
Output file type is .asc 
Maximum iterations is 500 
Convergence threshold is 1.0E-5 
Random test percentage is 10 
Jackknife selected 
Remove duplicates selected 
Make pictures selected 
Create response curves selected 
  



The following is a Maxent output for Penstemon albomarginatus run just using occurrence data 
for Clark County and not the species full distribution.  It is included for information purposes 
only to allow one to compare the results of running a Maxent model for just a subset of a species 
distribution with the output above which was run using the species full distribution.  The output 
from the following run was not used in the results. 

Maxent model for Penstemon_albomarginatus 

 
Analysis of omission/commission 

The following picture shows the omission rate and predicted area as a function of the cumulative threshold. The 
omission rate is is calculated both on the training presence records, and (if test data are used) on the test records. The 
omission rate should be close to the predicted omission, because of the definition of the cumulative threshold.  

 
 
 

  



The next picture is the receiver operating characteristic (ROC) curve for the same data. Note that the specificity is 
defined using predicted area, rather than true commission (see the paper by Phillips, Anderson and Schapire cited on 
the help page for discussion of what this means). This implies that the maximum achievable AUC is less than 1. If 
test data is drawn from the Maxent distribution itself, then the maximum possible test AUC would be 0.987 rather 
than 1; in practice the test AUC may exceed this bound.  

 
 
 
 

  



Some common thresholds and corresponding omission rates are as follows. If test data are available, binomial 
probabilities are calculated exactly if the number of test samples is at most 25, otherwise using a normal 
approximation to the binomial. These are 1-sided p-values for the null hypothesis that test points are predicted no 
better than by a random prediction with the same fractional predicted area. The "Balance" threshold minimizes 6 * 
training omission rate + .04 * cumulative threshold + 1.6 * fractional predicted area. 

Cumulative 
threshold 

Logistic 
threshold Description Fractional 

predicted area

Training 
omission 

rate 

Test 
omission 

rate 
P-value

1.000 0.008 Fixed cumulative value 0.078 0.000 0.000 1.741E-
8 

5.000 0.094 Fixed cumulative value 0.036 0.015 0.000 8.146E-
11 

10.000 0.224 Fixed cumulative value 0.027 0.015 0.143 2.708E-
9 

3.125 0.046 Minimum training 
presence 0.045 0.000 0.000 3.679E-

10 

26.889 0.424 10 percentile training 
presence 0.016 0.088 0.286 1.951E-

8 

13.280 0.280 Equal training sensitivity 
and specificity 0.024 0.029 0.143 1.278E-

9 

13.208 0.273 Maximum training 
sensitivity plus specificity 0.024 0.015 0.143 1.278E-

9 

8.859 0.196 Equal test sensitivity and 
specificity 0.028 0.015 0.000 1.527E-

11 

8.859 0.196 Maximum test sensitivity 
plus specificity 0.028 0.015 0.000 1.527E-

11 

1.282 0.013 
Balance training omission, 

predicted area and 
threshold value 

0.069 0.000 0.000 7.676E-
9 

6.295 0.133 
Equate entropy of 

thresholded and non-
thresholded distributions 

0.033 0.015 0.000 4.084E-
11 

 

  



Pictures of the model 
This is a representation of the Maxent model for Penstemon_albomarginatus. Warmer colors show areas with better 
predicted conditions. White dots show the presence locations used for training, while violet dots show test locations. 
Click on the image for a full-size version. 
 

 

  



Response curves 
 
These curves show how each environmental variable affects the Maxent prediction. The (raw) Maxent model has the 
form exp(...)/constant, and the curves show how the exponent changes as each environmental variable is varied, 
keeping all other environmental variables at their average sample value. Click on a response curve to see a larger 
version. 
 



 

Analysis of variable contributions 
 
The following table gives a heuristic estimate of relative contributions of the environmental variables to the Maxent 
model. To determine the estimate, in each iteration of the training algorithm, the increase in regularized gain is 
added to the contribution of the corresponding variable, or subtracted from it if the change to the absolute value of 
lambda is negative. As with the jackknife, variable contributions should be interpreted with caution when the 
predictor variables are correlated. 

Variable Percent contribution  
rastert_bio_2_c1 23.4 
rastert_bio_4_c1 21.7 
rastert_bio_3_c1 18.7 
rastert_bio_6_c1 14.1 
rastert_bio_16_1 9.1 
rastert_bio_15_1 6.8 
rastert_bio_13_1 3.3 
rastert_bio_7_c1 2.2 
rastert_bio_8_c1 0.7 
rastert_bio_14_1 0 
rastert_bio_18_1 0 
rastert_bio_11_1 0 
rastert_bio_12_1 0 
rastert_bio_9_c1 0 
rastert_bio_5_c1 0 
rastert_bio_1_c1 0 
rastert_bio_19_1 0 
rastert_bio_17_1 0 
rastert_bio_10_1 0 



The following picture shows the results of the jackknife test of variable importance. The environmental variable 
with highest gain when used in isolation is rastert_bio_6_c1, which therefore appears to have the most useful 
information by itself. The environmental variable that decreases the gain the most when it is omitted is 
rastert_bio_6_c1, which therefore appears to have the most information that isn't present in the other variables. 
 

 
 
The next picture shows the same jackknife test, using test gain instead of training gain. Note that conclusions about 
which variables are most important can change, now that we're looking at test data.  

 



Lastly, we have the same jackknife test, using AUC on test data.  

 

Raw data outputs and control parameters 
 
Regularized training gain is 3.331, training AUC is 0.994, unregularized training gain is 3.583. 
Unregularized test gain is 3.423. Test AUC is 0.989, standard deviation is 0.003 (calculated as in DeLong, DeLong 
& Clarke-Pearson 1988, equation 2). Algorithm terminated after 500 iterations (8 seconds). 
 
The follow parameters and settings were used during the run: 
68 presence records used for training, 7 for testing. 
10068 points used to determine the Maxent distribution (background points and presence points). 
Environmental layers used (all continuous): rastert_bio_10_1 rastert_bio_11_1 rastert_bio_12_1 rastert_bio_13_1 
rastert_bio_14_1 rastert_bio_15_1 rastert_bio_16_1 rastert_bio_17_1 rastert_bio_18_1 rastert_bio_19_1 
rastert_bio_1_c1 rastert_bio_2_c1 rastert_bio_3_c1 rastert_bio_4_c1 rastert_bio_5_c1 rastert_bio_6_c1 
rastert_bio_7_c1 rastert_bio_8_c1 rastert_bio_9_c1 
Command line: 
Feature types used: Linear Quadratic Hinge 
Regularization multiplier is 1.0 
Regularization values: linear/quadratic/product: 0.141 categorical: 0.250 hinge: 0.500 
Species file is E:\rare_plant_data\habitat_modeling_maxent\worldclim\Pen_albo_dd.csv 
Environmental variables from E:\rare_plant_data\habitat_modeling_maxent\worldclim\bio_30s_esri\bio_ascii 
Output directory is E:\rare_plant_data\habitat_modeling_maxent\worldclim\test 
Output format is Logistic 
Output file type is .asc 
Maximum iterations is 500 
Convergence threshold is 1.0E-5 
Random test percentage is 10 
Jackknife selected 
Remove duplicates selected 
Make pictures selected 
Create response curves selected 
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