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Designing a Long-term Occupancy Monitoring Plan for a Cryptic Reptile
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AssTrRACT.—Monitoring populations of cryptic reptiles is challenging because of their crypticity. Occupancy monitoring is a useful
technique for local populations, but seasonal unavailability for detection can result in large swings in apparent annual occupancy. We
used data from 5 yr of occupancy surveys, and the observed sampling and process error, to evaluate the power to detect true change in
occupancy under a range of sampling scenarios and occupancy trends for a cryptic reptile, Mojave Desert Tortoise (Gopherus agassizii).
None of the sampling strategies that we tested had the power to detect a 1% per annum increase in true occupancy over a 10-yr period and
required >70 sites to detect a 1% decline in occupancy. For a 2% per annum change in true occupancy, 50 sites were needed and for a 3-4%
per annum change 20-30 sites were needed. Power to detect a 4% per annum decline in occupancy was >80% for all number of secondary
visits and number of sites if the number of sites was >50, but required seven visits to >60 sites to detect a 4% increase in occupancy.
Multiple sampling designs provided equivalent power. For example, both designs of 80 sites with three secondary visits and 50 sites with
seven secondary visits yielded >50% power on average to detect 1-4% per annum changes in true occupancy. These results can help local
managers of Mojave Desert Tortoises and other cryptic reptiles to design optimally efficient occupancy monitoring strategies.

Worldwide, many reptile populations are declining. For
example, seven species of tortoise have recently gone extinct
and 48 (73.8%) of the 65 extant species are currently threatened
with extinction (Rhodin et al., 2018). Threats to reptile and
tortoise populations are numerous and include habitat degra-
dation and loss, commercial and hunting overexploitation, road
mortality, and predation by subsidized predators (Rhodin et al.,
2018; Stanford et al., 2020). Mojave Desert Tortoises (Gopherus
agassizii; Fig. 1), endemic to the Mojave Desert in the
southwestern United States, are no exception to declines in
Testudinidae. Mojave Desert Tortoises have been federally listed
as a threatened species since 1990 (USFWS, 1990), yet they
continue to exhibit long-term declines in abundance across most
of their range (Allison and McLuckie, 2018). Significant
conservation work to recover Mojave Desert Tortoise popula-
tions is ongoing (Averill-Murray et al., 2012), and a key
component to ensure successful recovery and to identify the
need for additional conservation actions is effective monitoring.

Monitoring programs for Mojave Desert Tortoise populations
generally use one of three methods: line-distance sampling,
occupancy monitoring, or mark—recapture density estimates.
Line-distance sampling is the current method used for range-
wide monitoring of trends in the density of Mojave Desert
Tortoises (Allison and McLuckie, 2018). Line-distance sampling
accommodates imperfect detection as a function of distance or
visibility from the survey track and with additional effort can
adjust for unavailability for detection along the survey line itself
(Allison and McLuckie, 2018). Although successful at large
scales, line-distance sampling requires a relatively large number
(~60-80) of detected individuals (Buckland et al., 2001) per
strata to reliably estimate the distance decay function. The large
number of individuals that are required for the line-distance
sampling method limits its utility for Mojave Desert Tortoises at
local levels because tortoise densities are frequently in the range
of 1-2 adults/km? (Allison and McLuckie, 2018), thus requiring
extensive transects to achieve 60-80 detected individuals (Smith
et al., 2009; Stober et al., 2017). Occupancy monitoring is a more
recent technique, where rather than monitoring density or
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abundance, the proportion of sampling sites that are occupied
are monitored (MacKenzie et al., 2002). Occupancy monitoring
accommodates imperfect detection because of crypticity and can
accommodate unavailability for detection if confounded with
imperfect detection (Harju and Cambrin, 2019). Occupancy
monitoring has also been demonstrated to be more cost-efficient
with higher statistical power to detect declines in occupancy
than line-distance sampling can detect declines in abundance
for Sonoran Desert Tortoises (Gopherus morafkai; Zylstra et al.,
2010). Mark-recapture density estimates can be robust and
scaled down to local areas, but are often cost-prohibitive for
Mojave Desert Tortoises because of the intensive field effort
required to accumulate sufficient capture and recapture samples
(Longshore et al., 2003).

Occupancy monitoring is a promising option for monitoring
Mojave Desert Tortoises at smaller scales because of its
comparative ease of implementation and reflection of a
fundamentally important population metric (i.e., occupied
range). However, as is the same for other methods of
monitoring Mojave Desert Tortoises, it is subject to sporadic
bias and noise induced by seasonal unavailability for detection.
Seasonal unavailability for detection may be widespread across
a variety of taxa, including reptiles and ephemeral aquatic and
terrestrial plants (Alexander et al., 1997; Chen et al., 2013;
Couturier et al., 2013; Gray et al., 2013; Harju and Cambrin,
2019). For example, perennial forbs and grasses may not
produce aboveground parts in a given year, even though the
plant itself is truly present at the site (Alexander et al., 1997).
Mojave Desert Tortoises present a tortoise version of the
problem of seasonal unavailability for detection. The amount
of time that Mojave Desert Tortoises spend above ground, and
are thus available for detection, varies dramatically in response
to weather and vegetation and may be as low as 11-20% of the
spring and summer (Duda et al., 1999). This means that for a
given survey year, truly present tortoises may remain unde-
tected on all survey occasions, suggesting absence. Harju and
Cambrin (2019) dealt with seasonal unavailability for detection
of Mojave Desert Tortoises by relaxing the assumed period of
demographic closure to encompass multiple years, thereby
allowing for estimation of relationships between landscape
features and latent occurrence, given large interannual variation
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Fic. 1. A male Mojave Desert Tortoise (Gopherus agassizii) on the
BCCE, southern Nevada, USA (photo credit S. Cambrin).

in apparent occupancy. But for long-term monitoring of
occupancy trends, there is no clear way to deal with seasonal
unavailability for detection; thus, long-term monitoring is
currently subject to high statistical noise and low precision in
trend estimates (Allison and McLuckie, 2018).

We focus here on developing a long-term monitoring
program for Mojave Desert Tortoise occupancy, specifically
because of its applicability to monitoring local populations.
Clark County, Nevada, USA, is responsible for managing a
35,000-ha conservation easement (Boulder City Conservation
Easement [BCCE]) southeast of Las Vegas, primarily for the
conservation of Mojave Desert Tortoises and other species. An
occupancy monitoring program (sensu MacKenzie et al., 2002)
was implemented from 2013 to 2017. We used the observed
results and high interannual swings in apparent occupancy
because of seasonal unavailability for detection to simulate
power to detect specified declines in Mojave Desert Tortoise
occupancy rates under different sampling strategies. We sought
to determine the outside bounds of sampling parameter
combinations (e.g.,, number of sample sites and number of
secondary period sampling visits per year) and determine the
power that different sampling designs would have to detect a
range of true changes in occupancy over a 10-yr period. Based
on these results, we present recommendations for implementing
a long-term occupancy monitoring program with sufficient
power to reasonably detect true changes in Mojave Desert
Tortoise occupancy rates.

MATERIALS AND METHODS

From 2013 to 2014, the Clark County Desert Conservation
Program conducted occupancy monitoring at 75 4-ha sites
within the BCCE, with three secondary period surveys within
each year (March-May), and from 2015 to 2017 at a subset of 60
sites, with seven secondary period surveys within each year
(March-June). Dropped sites were excluded at random to
reallocate within-year survey effort to the remaining 60 sites.
The sampling design is referred to as the standard design,
wherein S sites are visited each of K times within each of T years
(MacKenzie et al., 2002).

To evaluate the optimal standard design, we looked at all
possible combinations of the number of sample sites in

increments of 10 up to 100 (n.sites = [10, 20, 30,...,100]) and
the number of secondary visits (n.visits = [3, 5, 7]), and we did
so across nine annual change rates in the true occupancy rate (r
= [0.96, 0.97, 0.98,...,1.04]) over a 10-yr period. Simulated
datasets were analyzed using the dynamic occupancy modeling
framework (MacKenzie et al.,, 2003) in the ‘unmarked’ R
package (Fiske and Chandler, 2011). We started all simulations
at an initial occupancy rate of 0.5, partly because that is the
midpoint of all possible occupancy rates [0, 1] and partly
because it is close to the recent latent true occupancy rate in the
BCCE of 0.57 as estimated in Harju and Cambrin (2019). We
calculated the underlying true occupancy rate \ for each of the
10 yr y and annual rate of change r as follows:

v, =05x7

This resulted in final true occupancy rates in year 10 ranging
from 0.35 to 0.71 (Fig. 2).

Conducting occupancy sampling for Mojave Desert Tortoises,
however, is noisier than simply recording presence and absence.
To incorporate potential noise into the simulations, we added
two types of variability: sampling noise and process noise.
Sampling noise was the error observed as a function of
imperfect detection, where some occupied sites do not have
any observed individuals within the secondary or primary
sampling period even though they truly are present (detection
probability ~ uniform(0.185, 0.734); Harju and Cambrin, 2019).
Sampling noise was included via the statistical distributions that
we used to generate the simulated datasets. Process noise was
that arising from Mojave Desert Tortoise ecology, whereby
apparent occupancy within a given primary sampling period
was both a function of true occupancy and availability for
detection. To model process noise, we used a parametric
bootstrap based on the variation in apparent annual occupancy
rates observed in a previous Mojave Desert Tortoise occupancy
study (Harju and Cambrin, 2019). We used these data to fit a
truncated normal distribution on the logit scale, with mean (n=
0) and standard deviation (c = 1.063) derived from the data on
apparent annual occupancy rate deviations and the bounds of
the distribution set to the minimum and maximum observed
deviations (a = —1.53, b = 1.647; logit scale). The process ‘noise’
parameter was then added to the true across-site occupancy
rate, the summed value of which was used as the probability
parameter in the sampling distribution used to generate
simulated datasets with sampling noise (i.e., the process noise
parameter modified the probability of a site appearing occupied
in a given year, based on the underlying true occupancy rate in
that year; see Supplementary Data for all R code used in the
simulations). It is likely that this noise is a weather-related
phenomenon, because Mojave Desert Tortoises restrict above-
ground movement in drought years (Duda et al., 1999), but for
these simulations the noise was treated as a random feature of
surveys for Mojave Desert Tortoise occupancy. Furthermore,
Harju and Cambrin (2019) assumed constant occupancy during
their analysis period (e.g., no trend in occupancy), an
assumption that becomes less likely over longer timescales.
Here, this means that variability in apparent occupancy is a
conservative estimate, in that true variability may be lower and
realized power to detect a change in occupancy may be higher
in practical settings.

We generated 150 simulated 10-yr occupancy datasets for
each of the 270 possible combinations of 10 site sample sizes,
three visitation schedules, and nine annual rates of change. For
each of those 10-yr occupancy datasets we modeled coloniza-
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Fic. 2. Modeled true occupancy rates in simulated Mojave Desert Tortoise (Gopherus agassizii) occupancy sample design analysis. Estimated
occupancy rates in the simulations were subject to additional sampling (imperfect detection) and process noise (seasonal variation in availability for

detection).

tion and extinction rates for individual sample sites as constant
over the 10 yr. Colonization is the rate that previously
unoccupied sites become occupied (e.g., increase in occupancy
rate), and extinction is the rate that previously occupied sites
become unoccupied (e.g., decline in occupancy rate; MacKenzie
et al., 2003). We extracted colonization rate estimates (from
models with positive annual rates of change) and extinction rate
estimates (from models with negative annual rates of change)
from simulated trajectories and then calculated 85% confidence
intervals (CIs) on colonization and extinction rate estimates. We
chose 85% Cls to reflect challenges with setting thresholds for
“significance” too high given the sampling and process noise,
while still seeking sampling combinations that would yield a
high degree of power. We defined the power to detect true
change, given sampling and process noise, as the rate that 85%
ClIs in estimated colonization and extinction rates excluded zero.
In other words, we defined power as the frequency that the null
hypothesis of “constant colonization or extinctions rates” was
rejected with o = 0.15. The result compared and contrasted the
power of different combinations of sample sites and of
secondary visits for detecting a true change in occupancy rates
for different magnitudes of true change. Because the true
occupancy rate of change is unknown, we also averaged power
to detect changes across all modeled rates of change to identify
power equivalencies to guide effective allocation of occupancy
monitoring budgets.

We also sought to determine whether there was nonlinearity
in the power to detect change as a function of the number of
sample sites to determine whether, and where, there was a way
to find the most efficient balance between allocating funding to
additional sample sizes vs. reduced returns on investment, in
terms of power to detect changes in occupancy. We built a
multiple linear regression model with the number of sites,
number of visits, and quadratic rate of change as predictor
variables. We then used segmented regression to identify
whether, and where, there was a significant difference in the
gains in power to detect change as a function of the number of
sites surveyed. All data simulations, result processing, and

statistical analyses were performed in program R 4.0 (R Core
Team, 2021). The segmented regression was performed using
the ‘segmented’ package in R (Muggeo, 2003). See Supplemen-
tary Data for all statistical R code to create, summarize, and
analyze simulated datasets and for an example input file
defining combinations of parameters to simulate.

REsuLTs

Processing time for the 40,500 simulated datasets, each with
10 yr of simulated data following the MacKenzie et al. (2003)
dynamic occupancy model, was considerable, requiring ~150 h
of processing time. Incorporating both sampling and process
noise resulted in large swings in apparent occupancy over time
for any given simulation, matching the swings in apparent
occupancy reported by Harju and Cambrin (2019). Nonetheless,
on average, the trends were close to the true calculated trend in
across-site occupancy (Fig. 3).

The power analysis showed several general patterns that
were expected. Larger annual rates of change in true occupancy
resulted in more power to detect true change in occupancy. In
other words, as the strength of the decline or increase in the
occupancy rate increased in magnitude, more of the 85% Cls on
colonization or extinction rates in simulated datasets did not
overlap zero (Fig. 4). Also, as the number of sites increased, the
power to detect the true change in occupancy increased. By
contrast, the number of secondary sampling visits in the
simulated dataset did not appear to have a strong effect on
increasing power to detect declines in occupancy (Fig. 4a), but
was associated with power to detect increases in occupancy
(Fig. 4b).

Larger annual rates of population change, both increases and
declines, were more likely to exhibit plateaus in the power to
detect change (Fig. 4). The highest rate of change analyzed, a 4%
per annum decline or increase, generally exhibited equivalent
power between 60 and 100 sites. Gains in power with additional
sites were linear with lower rates of annual change in
occupancy.
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Fic. 3. Overlay of 150 estimated individual apparent occupancy rates (yellow-purple lines) from one combination of simulation parameters,
average simulated occupancy rate (red dotted line), and true occupancy rate (black solid line) for 60 sites, five visits, and a 3% annual decline in the
across-site occupancy rate. Violin plots in the background are year-specific densities of the estimated individual apparent occupancy trajectories.
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Fic. 4. Power to detect trends in across-site occupancy rates in the
presence of sampling and process noise in Mojave Desert Tortoise
(Gopherus agassizii) occupancy surveys. Power was defined as the rate at
which 85% Cls for dynamic extinction (a) and colonization (b)
parameters did not overlap zero. Fitted curves are quadratic
polynomials, with 95% CI bands.

Power equivalency calculations, essentially a reorganizing
and recombination of the data in Figure 4, provide guidance on
selecting between the trade-offs of different sampling designs
that yield equivalent power to detect true change (Fig. 5).
Averaging across all potential rates of change in occupancy, we
found that additional intraseason surveys could offset addi-
tional numbers of sites. For example, sampling 60 sites five
times per year yielded an equivalent average power to detect
change as sampling 80 sites three times per year (Fig. 5). The
results could be useful if there are cost differences to prioritizing
number of sites vs. number of visits. For example, assuming an
average baseline personnel cost of $100 per site visit, sampling
60 sites with five visits each would cost $30,000 [$100 X 60 X 5=
$30,000], whereas sampling 80 sites with three visits each would
cost $24,000 [$100 X 80 X 3 = $24,000], yet the power to detect a
change in occupancy would be equivalent (52.2% power for 80
sites, three visits vs. 52.8% power for 60 sites, five visits). For
reference, the 2017 sampling design on the BCCE of 60 sites with
seven visits had an average power of 54.0% to detect a 1-4%
change (increase or decline) in occupancy, and 60 sites with five
visits would have an average 52.8% power.

The segmented regression found that the rate of increase in
power with increasing number of sites declined by ~60.0%
when adding more than ~47 sites (estimated breakpoint = 46.7
sites, 95% CI = 29.0-64.3; Fig. 6). For every additional 10 sites
sampled, there was an increase in percentage points of power to
detect change of 0.070 (95% CI = 0.046-0.094; e.g., on average,
power was 0.29 with 20 sites and was 0.36 with 30 sites) up to 44
sites. Above 44 sites, an additional 10 sites yielded a power
increase of only 0.028 percentage points (95% CI=0.001-0.056).

Discussion

Designing an effective long-term monitoring program re-
quires achieving a balance between survey design and cost. We
used existing occupancy survey data for Mojave Desert
Tortoises to simulate and analyze 150 occupancy datasets over
a 10-yr period for each of 270 possible combinations of 10 to 100
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sample sites; three, five, or seven secondary visits per year; and  underlying occupancy rates were associated with higher power
under nine different scenarios of true change in the underlying to detect the true change, given the presence of sampling and
across-site occupancy rate. We found that, as expected, higher process noise (Guillera-Arroita and Lahoz-Monfort, 2012).
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(e.g., power to detect change >50%), especially with at least 30
sample sites, whereas increases in occupancy were not reliably
detected until growth rates were 3-4% per annum with at least
40 sites. Segmented regression found that, across all magnitudes
of change in underlying occupancy and number of secondary
visits, the power to detect change in occupancy increased
strongly with the number of sample sites until 47 sites and then
increased much more weakly with additional sites.

These findings provide some guidance for developing a long-
term monitoring program for Mojave Desert Tortoises in similar
populations (Allison and McLuckie, 2018). Given the observed
variability in apparent occupancy and detection rates reported
in Harju and Cambrin (2019), no study design had strong power
to reliably and consistently detect small trends of 1-2% per
annum declines or increases in across-site occupancy. This
agrees with occupancy power analyses for Sonoran Desert
Tortoises and Gopher Tortoises (Gopherus polyphemus), where
power to detect 1% declines in occupancy was unachievable
(Zylstra et al., 2010; Chandler et al., 2020). For slightly larger per
annum trends of 2% decline in Mojave Desert Tortoise
occupancy, at least 50 sites would be needed to detect declines
with a moderate level of power (i.e., 50-60% power). Therefore,
it should be considered that if one of these assessed standard
study designs is used, managers should not expect high power
to detect small changes in occupancy.

For moderate-to-large trends in occupancy, such as 3 or 4%
per annum increases or declines in occupancy rates, higher
levels of power to detect the change (i.e., 70-80% power) were
seen with 50 to 60 sample sites. By comparison, segmented
regression showed a marked diminished return on field effort
with more than 47 sites, across all numbers of visits and
magnitude of occupancy rate change. Equivalency calculations
also showed that across the modeled rates of change, sampling
80 sites for only three visits each season provided the same
power level as sampling 60 sites with five visits each.

The largest single constraint inherent in these results is the
application of the standard design. Other occupancy sampling
simulation studies have found that rather than applying the
standard sampling design, it is more efficient to apply a removal
sampling design (MacKenzie and Royle, 2005) or a conditional
sampling design (Specht et al., 2017). We argue not against these
conclusions, but rather that such a flexible budget and effort
allocation is not feasible for many organizations, where use-or-
lose budgets are allocated before sampling or where shuffling of
field technician responsibilities cannot accommodate high
uncertainty in the scope of follow-up efforts (MacKenzie and
Royle, 2005; Specht et al.,, 2017). It may be easier to
accommodate these more efficient sampling designs for in-
house studies, but it becomes much more complicated when
contracting surveys outside of an organization because of the
need for cost certainties and potential contracting constraints
that may exist within an organization. Thus, although we have
conducted these simulations within the framework of the
standard design, we acknowledge that more flexible sampling
paradigms may be available, albeit with more complicated
budgeting, planning, and analysis requirements than the
standard design.

We treated process error in availability for detection as a
random process, but in reality such noise is likely a function of
weather and climate. Mojave Desert Tortoises are known to
restrict aboveground movements during drought years when
annual forbs are not available as forage (Duda et al., 1999).
Future work to evaluate the relationship between apparent

occupancy and weather or climate could improve occupancy
estimation and via inclusion as a covariate could reduce the
apparent noise in occupancy estimates (Harju and Cambrin,
2019). We also note that dynamic occupancy models are
potentially a function of multiple simultaneous drivers (i.e.,
colonization and extinction rates), and our simulations specified
a “true” rate of occupancy increase or decline and then
estimated colonization and extinction rates rather than fixing
these rates themselves. In reality, changes in colonization or
extinction are the driving patterns in observed annual occu-
pancy, and multiple combinations of the two could result in the
same observed occupancy pattern (MacKenzie et al., 2003). For
example, either a reduction in colonization of 0.1 or an increase
in the extinction rate of 0.1 would have the same impact on
change in apparent occupancy. Including covariates behind the
mechanism of occupancy rate change can help improve
understanding and precision of the apparent change in
occupancy rate.

These results suggest that for designing a long-term occu-
pancy monitoring program for Mojave Desert Tortoises using
the standard design, at a minimum, 47 sites should be surveyed
to maximize the gain in power for each additional site.
Furthermore, to maximize the total power equivalency and
efficiency, we suggest that the number of sample sites for
Mojave Desert Tortoise occupancy at the BCCE be increased
from the current 60 to 80, but that the number of secondary
sample visits be reduced to 3 to maintain power while reducing
cost. These changes are expected to yield an equivalent power to
the current sampling scheme, but at a lower cost. If a higher
level of power is desired, local managers should even further
increase the number of sample sites.
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